[1]朱静,岳思宁,陈琛,等.谷氨酸合酶在灵芝中生物学功能的研究[J].南京农业大学学报,2019,42(6):1073-1079.[doi:10.7685/jnau.201907058]
 ZHU Jing,YUE Sining,CHEN Chen,et al.Study on the biological function of glutamate synthase in Ganoderma lucidum[J].Journal of Nanjing Agricultural University,2019,42(6):1073-1079.[doi:10.7685/jnau.201907058]
点击复制

谷氨酸合酶在灵芝中生物学功能的研究()
分享到:

《南京农业大学学报》[ISSN:1000-2030/CN:32-1148/S]

卷:
42卷
期数:
2019年6期
页码:
1073-1079
栏目:
生物与环境
出版日期:
2019-11-15

文章信息/Info

Title:
Study on the biological function of glutamate synthase in Ganoderma lucidum
作者:
朱静 岳思宁 陈琛 宋书琪 连玲丹 赵明文
南京农业大学生命科学学院/农业农村部食用菌加工重点实验室, 江苏 南京 210095
Author(s):
ZHU Jing YUE Sining CHEN Chen SONG Shuqi LIAN Lingdan ZHAO Mingwen
College of Life Sciences/Key Laboratory of Edible Mushroom Processing, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
关键词:
灵芝谷氨酸合酶基因沉默氮源菌丝生长灵芝三萜合成
Keywords:
Ganoderma lucidumglutamate synthasegene silencingnitrogen sourcesmycelium growthganoderic acid synthesis
分类号:
Q936
DOI:
10.7685/jnau.201907058
摘要:
[目的] 通过对谷氨酸合酶(glutamate synthase,GOGAT)的基因序列进行预测和分析,构建谷氨酸合酶基因的沉默转化子,验证谷氨酸合酶在灵芝吸收、利用氮源、生长及次级代谢中的作用。[方法] 利用真菌中已报道的谷氨酸合酶基因,在灵芝基因组库中分析比对得到灵芝中可能的谷氨酸合酶基因。通过构建进化树和结构域分析及酶活性测定,确定灵芝谷氨酸合酶序列。随后利用RNA干扰技术,将灵芝的GOGAT基因进行沉默,研究GOGAT对灵芝生长及次级代谢的影响。[结果] 获得灵芝谷氨酸合酶序列,该酶具有保守的谷氨酸合酶结构域,并且在进化上高度保守。在4种氮源(谷氨酰胺、铵盐、脯氨酸和硝酸盐)条件下检测谷氨酸合酶活性和基因转录水平,野生菌株中的GOGAT比酶活和转录水平在不同氮源条件下没有显著变化。通过RNA干扰方法,获得沉默效率分别为(77.0±1.9)%和(77.5±2.0)%的GOGAT沉默菌株2株。平板试验表明,将GOGAT沉默后,灵芝菌丝的生长受到一定程度的抑制。在硝酸盐培养条件下,相比于野生菌株,GOGAT沉默菌株基本停止生长;而在脯氨酸存在条件下,2株沉默菌株的生长直径分别降低(16.0±1.9)%和(21.0±1.3)%。进一步检测灵芝三萜含量发现,当使用铵盐或脯氨酸作为唯一氮源培养时,相比于对照菌株,GOGAT沉默菌株中的灵芝三萜含量分别降低(32.1±4.5)%和(11.0±1.1)%;而以谷氨酰胺和硝酸盐培养时,各菌株中的灵芝三萜含量没有显著变化。[结论] 本研究获得了灵芝中合成谷氨酸的重要酶基因GOGAT,发现其对灵芝的生长及次级代谢十分重要。
Abstract:
[Objectives] By predicting and analyzing the gene sequence of glutamate synthase(GOGAT),GOGAT silenced strains were constructed to verify the roles of GOGAT in nitrogen utilization,growth,metabolism biosynthesis in Ganoderma lucidum.[Methods] Using the sequence of glutamate synthase that had been reported in other fungi,the probable sequence of glutamate synthase was obtained by comparison in the genome library of G. lucidum. The sequence of glutamate synthase was determined by constructing a phylogenetic tree,domain analysis and enzyme activity assay. RNA interference technology was used to construct the GOGAT silenced strains,and the effects of GOGAT on fungal growth and secondary metabolism was studied in G. lucidum.[Results] The sequence of glutamate synthase of G. lucidum was obtained,which had conserved glutamate synthase domains and was highly conserved in evolution. The enzyme activity and transcription level of glutamate synthase gene were analyzed under different nitrogen conditions,and no significant changes were observed. Two GOGAT silenced strains were constructed with a silencing efficiency of (77.0±1.9)% and(77.5±2.0)%,respectively. The mycelium growth was inhibited when GOGAT was silenced. The mycelia of GOGAT silenced strains stopped growth compared with wild type(WT),when using the nitrate as the nitrogen source. While the diameter of the colony decreased(16.0±1.9)% and(21.0±1.3)%,respectively,in the GOGAT silenced strains under the cultivation of proline. The contents of ganoderic acid in the GOGAT-silenced strains decreased about(32.1±4.5)% and (11.0±1.1)%,respectively,when ammonia or proline was used as the sole nitrogen source. But it showed no difference among control strains and GOGAT silenced strains when cultured with glutamine or nitrate.[Conclusions] The sequence of glutamate synthase in G. lucidum was obtained. We found that the GOGAT was important for fungal growth and secondary metabolism in G. lucidum.

参考文献/References:

[1] Mihlan M,Homann V,Liu T W D,et al. AREA directly mediates nitrogen regulation of gibberellin biosynthesis in Gibberella fujikuroi,but its activity is not affected by NMR[J]. Molecular Microbiology,2003,47(4):975-991.
[2] Tudzynski B. Nitrogen regulation of fungal secondary metabolism in fungi[J]. Frontiers in Microbiology,2014,5:656.
[3] Wang B,Han X Y,Bai Y H,et al. Effects of nitrogen metabolism on growth and aflatoxin biosynthesis in Aspergillus flavus[J]. Journal of Hazardous Materials,2017,324:691-700.
[4] Cooper A,Jeitner T. Central role of glutamate metabolism in the maintenance of nitrogen homeostasis in normal and hyperammonemic brain[J]. Biomolecules,2016,6(2):16.
[5] ter Schure E G,van Riel N A W,Verrips C T. The role of ammonia metabolism in nitrogen catabolite repression in Saccharomyces cerevisiae[J]. FEMS Microbiology Reviews,2000,24(1):67-83.
[6] Valenzuela L,Ballario P,Aranda C,et al. Regulation of expression of GLT1,the gene encoding glutamate synthase in Saccharomyces cerevisiae[J]. Journal of Bacteriology,1998,180(14):3533-3540.
[7] Cao F R,Feng L,Ye L H,et al. Ganoderic acid A metabolites and their metabolic kinetics[J]. Frontiers in Pharmacology,2017,8:101.
[8] 刘冬,李世敏,许柏球,等. 灵芝菌丝体深层液体发酵培养基研究[J]. 微生物学杂志,2001,21(2):15-17. Liu D,Li S M,Xu B Q,et al. A probe into medium formula for submerged culture of Ganoderma lucidum[J]. Journal of Microbiology,2001,21(2):15-17(in Chinese with English abstract).
[9] 冯杰,冯娜,贾薇,等. 氮源对灵芝菌丝体液态深层发酵合成灵芝三萜的影响[J]. 菌物学报,2016,35(6):722-733. Feng J,Feng N,Jia W,et al. Effects of nitrogen source on triterpene production by Ganoderma lingzhi G0119 based on liquid submerged fermentation[J]. Mycosystema,2016,35(6):722-733(in Chinese with English abstract).
[10] Zhao W,Xu J W,Zhong J J. Enhanced production of ganoderic acids in static liquid culture of Ganoderma lucidum under nitrogen-limiting conditions[J]. Bioresource Technology,2011,102(17):8185-8190.
[11] Livak K J,Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method[J]. Methods,2001,25:402-408.
[12] Ren A,Qin L,Shi L,et al. Methyl jasmonate induces ganoderic acid biosynthesis in the basidiomycetous fungus Ganoderma lucidum[J]. Bioresource Technology,2010,101(17):6785-6790.
[13] Mu D S,Shi L,Ren A,et al. The development and application of a multiple gene Co-silencing system using endogenous URA3 as a reporter gene in Ganoderma lucidum[J]. PLoS One,2012,7(8):e43737.
[14] Holmes A R,Collings A,Farnden K J F,et al. Ammonium assimilation by Candida albicans and other yeasts:evidence for activity of glutamate synthase[J]. Microbiology,1989,135(6):1423-1430.
[15] Wanduragala S,Sanyal N,Liang X W,et al. Purification and characterization of Put1p from Saccharomyces cerevisiae[J]. Archives of Biochemistry and Biophysics,2010,498(2):136-142.
[16] Sieg A G,Trotter P J. Differential contribution of the proline and glutamine pathways to glutamate biosynthesis and nitrogen assimilation in yeast lacking glutamate dehydrogenase[J]. Microbiological Research,2014,169(9/10):709-716.
[17] Schmacht M,Lorenz E,Senz M. Microbial production of glutathione[J]. World Journal of Microbiology and Biotechnology,2017,33(6):106.
[18] Ren A,Shi L,Zhu J,et al. Shedding light on the mechanisms underlying the environmental regulation of secondary metabolite ganoderic acid in Ganoderma lucidum using physiological and genetic methods[J]. Fungal Genetics and Biology,2019,128:43-48.

相似文献/References:

[1]欧阳翔,吴婧,丁一新,等.灵芝漆酶基因转录Cu2+诱导特性及其启动子的克隆与序列分析[J].南京农业大学学报,2009,32(1):36.[doi:10.7685/j.issn.1000-2030.2009.01.008]
 OUYANG Xiang,WU Jing,DING Yi-xin,et al.Cu^{2+} inducing characteristics of the transcription of laccase gene from Ganoderma lucidum,and cloning,and analysis of the promoter of the gene[J].Journal of Nanjing Agricultural University,2009,32(6):36.[doi:10.7685/j.issn.1000-2030.2009.01.008]
[2]朱芬,陈军,师亮,等.灵芝三萜高产菌株原生质体紫外诱变选育[J].南京农业大学学报,2008,31(1):37.[doi:10.7685/j.issn.1000-2030.2008.01.008]
 ZHU Fen,CHEN Jun,SHI Liang,et al.Breeding of Ganoderma lucidum strains rich in triterpenes by UV induced protoplast mutagenesis[J].Journal of Nanjing Agricultural University,2008,31(6):37.[doi:10.7685/j.issn.1000-2030.2008.01.008]
[3]唐传红,张劲松,陈明杰,等.灵芝属菌株遗传多样性的初步研究[J].南京农业大学学报,2005,28(2):0.[doi:10.7685/j.issn.1000-2030.2005.02.029]
[4]赵明文,陈明杰,王南,等.灵芝生产用种的亲缘关系研究[J].南京农业大学学报,2003,26(3):60.[doi:10.7685/j.issn.1000-2030.2003.03.015]
 ZHAO Ming wen,CHEN Ming jie,WANG Nan,et al.Study on genetic relationship among some commercial strains of Ganoderma[J].Journal of Nanjing Agricultural University,2003,26(6):60.[doi:10.7685/j.issn.1000-2030.2003.03.015]
[5]熊晓辉,沈昌,沈爱光.大豆蛋白为原料的灵芝深层发酵工艺研究[J].南京农业大学学报,1994,17(3):111.[doi:10.7685/j.issn.1000-2030.1994.03.018]
 Xiong Xiaohui,Shen Chang,Shen Aiguang.STUDY ON SUBMERGSO CULTURE OF GANDERMA LUCIDUM APPLYING SOYBEAN PROTEIN[J].Journal of Nanjing Agricultural University,1994,17(6):111.[doi:10.7685/j.issn.1000-2030.1994.03.018]
[6]任昂,曹鹏飞,吴凤礼,等.药用模式真菌灵芝小G蛋白基因家族的系统性分析[J].南京农业大学学报,2015,38(6):923.[doi:10.7685/j.issn.1000-2030.2015.06.008]
 REN Ang,CAO Pengfei,WU Fengli,et al.Systematic characterization of small GTPases gene family in the model medicinal mushroom Ganoderma lucidum[J].Journal of Nanjing Agricultural University,2015,38(6):923.[doi:10.7685/j.issn.1000-2030.2015.06.008]

备注/Memo

备注/Memo:
收稿日期:2019-07-27。
基金项目:中国博士后科学基金项目(2017M611835);江苏省自然科学基金项目(BK20180535)
作者简介:朱静,博士。
通信作者:赵明文,教授,博导,研究方向为食、药用菌遗传与育种,E-mail:mwzhao@njau.edu.cn。
更新日期/Last Update: 1900-01-01