[1]丁冠群,刘雪霞,原乔慧,等.烟草中异源表达AtPAP2对细胞分裂素敏感性的影响[J].南京农业大学学报,2019,42(6):1080-1087.[doi:10.7685/jnau.201902001]
 DING Guanqun,LIU Xuexia,YUAN Qiaohui,et al.Effect of heterologous expression of Arabidopsis PAP2 in tobacco on the sensitivity to cytokinin[J].Journal of Nanjing Agricultural University,2019,42(6):1080-1087.[doi:10.7685/jnau.201902001]
点击复制

烟草中异源表达AtPAP2对细胞分裂素敏感性的影响()
分享到:

《南京农业大学学报》[ISSN:1000-2030/CN:32-1148/S]

卷:
42卷
期数:
2019年6期
页码:
1080-1087
栏目:
生物与环境
出版日期:
2019-11-15

文章信息/Info

Title:
Effect of heterologous expression of Arabidopsis PAP2 in tobacco on the sensitivity to cytokinin
作者:
丁冠群1 刘雪霞1 原乔慧1 杨娜1 李楠2 吴寒2 甘立军1 李义2
1. 南京农业大学生命科学学院, 江苏 南京 210095;
2. 南京农业大学园艺学院, 江苏 南京 210095
Author(s):
DING Guanqun1 LIU Xuexia1 YUAN Qiaohui1 YANG Na1 LI Nan2 WU Han2 GAN Lijun1 LI Yi2
1. College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China;
2. College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
关键词:
细胞分裂素AtPAP2不定芽再生槲皮素烟草
Keywords:
cytokininAtPAP2adventitious bud regenerationquercetintobacco
分类号:
Q945
DOI:
10.7685/jnau.201902001
摘要:
[目的] 本文旨在研究黄酮类化合物含量的变化对植物幼苗中细胞分裂素的响应。[方法] 以稳定遗传的35S∷AtPAP2转基因烟草作为试验材料,以细胞分裂素典型的生理效应(抑制主根伸长生长和诱导离体叶片不定芽的再生)为试验模式系统,研究转基因烟草对细胞分裂素的响应。通过分析内源黄酮类化合物的含量,并结合外源施用,初步分析转基因烟草对细胞分裂素敏感的可能机制。[结果] 6-苄基腺嘌呤(6-benzylaminopurine,6-BA)(0.2~2.0 μmol·L-1)和植物体内天然存在的细胞分裂素(反式玉米素和异戊烯基腺嘌呤)处理野生型和转基因烟草,均抑制主根的伸长生长,对转基因烟草的抑制效应明显强于野生型,表明转基因烟草对细胞分裂素的响应更敏感。6-BA处理3 h后,可诱导野生型和转基因植物细胞分裂素响应基因ARR的表达,6-BA的诱导效果在转基因植株上更显著。利用细胞分裂素诱导离体叶片不定芽再生的试验系统,发现转基因烟草长愈伤组织的叶片比例和离体叶片上长芽的平均数均高于野生型,也表明转基因烟草对细胞分裂素的响应更敏感。通过UPLC分析发现,转基因烟草中槲皮素含量明显高于野生型。在培养基中添加50 μmol·L-1槲皮素也可以提高野生型烟草幼苗对细胞分裂素的敏感性,而添加生长素极性运输抑制剂2,3,5-三碘苯甲酸和萘基邻氨甲酰苯甲酸则显著增强6-BA对主根伸长生长的抑制效应。[结论] 在烟草体内过表达AtPAP2基因,可以提高内源槲皮素的含量,进而通过影响生长素的极性运输来调节植物对细胞分裂素的敏感性。
Abstract:
[Objectives] This research aimed at revealing the effect of elevated flavonoid content on the sensitivity of plant seedlings to cytokinin.[Methods] The stable transgenic plants 35S::AtPAP2 were used as material to study the response of transgenic plants to cytokinin with two classical experimental systems:the inhibition of root growth and the induction of adventitious bud regeneration by cytokinins treatment. Based on the analysis of the content of endogenous flavonoids and the application of exogenous flavonoids,the possible mechanism of the sensitivity of transgenic tobacco to cytokinin was analyzed.[Results] 6-benzylaminopurine(6-BA)(0.2-2.0 μmol·L-1)and two native cytokinins(zeatin and isopentenyladenine)treatments significantly inhibited root elongation in wild type and transgenic line,and the inhibitory effect of cytokinins was more profound in the transgenic line than those in the wild type. These results suggested that the roots of transgenic plants were more sensitive to cytokinins. Several cytokinin responsive ARR genes were upregulated in both transgenic seedlings and wild type 3 h after 6-BA treatment,and the effects of 6-BA were more obvious in transgenic plants than those in the wild type. Cytokinin-induced in vitro adventitious bud regeneration from leaves was used as another experimental model,and we found that the percentage of explants with calli and the average number of adventitious buds occurred in explants from transgenic plants was greater than that from the wild type when the explants cultured on medium supplemented with 6-BA. These results confirmed that transgenic plants were more sensitive to cytokinins. The UPLC analysis showed that the quercetin concentration significantly increased in the transgenic plants,and the exogenous application of quercetin(50 μmol·L-1)also increased the sensitivity of tobacco seedlings to cytokinin. In addition,treatment with the synthetic auxin transport inhibitors 2,3,5-triiodobenzoic acid and 1-naphthylphthalamic acid enhanced the inhibitory of 6-BA on primary root elongation.[Conclusions] Heterologous expression of Arabidopsis PAP2 could improve the sensitivity of transgenic tobacco plants to cytokinins by elevating the quercetin content and interrupting polar auxin transport.

参考文献/References:

[1] Buer C S,Imin N,Djordjevic M A. Flavonoids:new roles for old molecules[J]. Journal of Integrative Plant Biology,2010,52(1):98-111.
[2] Saito K,Yonekura-Sakakibara K,Nakabayashi R,et al. The flavonoid biosynthetic pathway in Arabidopsis:structural and genetic diversity[J]. Plant Physiology and Biochemistry,2013,72:21-34.
[3] Winkel-Shirley B. Biosynthesis of flavonoids and effects of stress[J]. Current Opinion in Plant Biology,2002,5(3):218-223.
[4] Xu W,Dubos C,Lepiniec L. Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes[J]. Trends in Plant Science,2015,20(3):176-185.
[5] Borevitz J O,Xia Y,Blount J,et al. Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis[J]. The Plant Cell,2000,12(12):2383-2394.
[6] Zuluaga D,Gonzali S,Loreti E,et al. Arabidopsis thaliana MYB75/PAP1 transcription factor induces anthocyanin production in transgenic tomato plants[J]. Functional Plant Biology,2008,35(7):606-618.
[7] Li N,Wu H,Ding Q,et al. The heterologous expression of Arabidopsis PAP2 induces anthocyanin accumulation and inhibits plant growth in tomato[J]. Functional and Integrative Genomics,2018,18(3):341-353.
[8] Lewis D R,Ramirez M V,Miller N D,et al. Auxin and ethylene induce flavonol accumulation through distinct transcriptional networks[J]. Plant Physiology,2011,156(1):144-164.
[9] Ng J L,Hassan S,Truong T T,et al. Flavonoids and auxin transport inhibitors rescue symbiotic nodulation in the Medicago truncatula cytokinin perception mutant cre1[J]. The Plant Cell,2015,27(8):2210-2226.
[10] Watkins J M,Hechler P J,Muday G K. Ethylene-induced flavonol accumulation in guard cells suppresses reactive oxygen species and moderates stomatal aperture[J]. Plant Physiology,2014,164(4):1707-1717.
[11] Brunetti C,Fini A,Sebastiani F,et al. Modulation of phytohormone signaling:a primary function of flavonoids in plant-environment interactions[J]. Frontiers in Plant Science,2018,9:1042.
[12] Jacobs M,Rubery P H. Naturally occurring auxin transport regulators[J]. Science,1988,241(4863):346-349.
[13] Peer W A,Murphy A S. Flavonoids and auxin transport:modulators or regulators?[J]. Trends in Plant Science,2007,12(12):556-563.
[14] Watkins J M,Chapman J M,Muday G K. Abscisic acid-induced reactive oxygen species are modulated by flavonols to control stomata aperture[J]. Plant Physiology,2017,175(4):1807-1825.
[15] Maloney G S,DiNapoli K T,Muday G K. The anthocyanin reduced tomato mutant demonstrates the role of flavonols in tomato lateral root and root hair development[J]. Plant Physiology,2014,166(2):614-631.
[16] Livak K J,Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT Method[J]. Methods,2001,25(4):402-408.
[17] Werner T,Schmülling T. Cytokinin action in plant development[J]. Current Opinion in Plant Biology,2009,12(5):527-538.
[18] Duclercq J,Sangwan-Norreel B,Catterou M,et al. De novo shoot organogenesis:from art to science[J]. Trends in Plant Science,2011,16(11):597-606.
[19] Saranya K S R,Siril E A. Enhanced in vitro shoot regeneration in Oldenlandia umbellata L. by using quercetin:a naturally occurring auxin-transport Inhibitor[J]. Proceedings of the National Academy of Sciences India Section B:Biological Sciences,2017,87(3):899-904.
[20] Hu W,Fagundez S,Katin-Grazzini L,et al. Endogenous auxin and its manipulation influence in vitro shoot organogenesis of citrus epicotyl explants[J]. Horticulture Research,2017,4:17071.
[21] Ruzicka K,Simásková M,Duclercq J,et al. Cytokinin regulates root meristem activity via modulation of the polar auxin transport[J]. Proc Natl Acad Sci USA,2009,106(11):4284-4289.
[22] Marhavy P,Bielach A,Abas L,et al. Cytokinin modulates endocytic trafficking of PIN1 auxin efflux carrier to control plant organogenesis[J]. Developmental Cell,2011,21(4):796-804.
[23] Waldie T,Leyser O. Cytokinin targets auxin transport to promote shoot branching[J]. Plant Physiology,2018,177(2):803-818.
[24] Street I H,Mathews D E,Yamburkenko M V,et al. Cytokinin acts through the auxin influx carrier AUX1 to regulate cell elongation in the root[J]. Development,2016,143(21):3982-3993.
[25] Jones B,Gunner?s S A,Petersson S V,et al. Cytokinin regulation of auxin synthesis in Arabidopsis involves a homeostatic feedback loop regulated via auxin and cytokinin signal transduction[J]. The Plant Cell,2010,22(9):2956-2969.
[26] Schaller G E,Bishopp A,Kieber J J. The yin-yang of hormones:cytokinin and auxin interactions in plant development[J]. The Plant Cell,2015,27(1):44-63.

相似文献/References:

[1]黄文晓,翁飞,査满荣,等.水稻突变体D12W191多分蘖表型产生与细胞分裂素的关系[J].南京农业大学学报,2016,39(5):711.[doi:10.7685/jnau.201603056]
 HUANG Wenxiao,WENG Fei,ZHA Manrong,et al.Relationship of the multi-tiller phenotype of a rice mutant D12W191 with cytokinin[J].Journal of Nanjing Agricultural University,2016,39(6):711.[doi:10.7685/jnau.201603056]

备注/Memo

备注/Memo:
收稿日期:2019-02-10。
基金项目:国家自然科学基金项目(31672124);南京农业大学科技平台实验技术人才基金项目(KJSY201711)
作者简介:丁冠群,硕士研究生。
通信作者:甘立军,副教授,硕导,研究方向为植物激素,E-mail:ganlj@njau.edu.cn。
更新日期/Last Update: 1900-01-01