[1]李秋霞,郭加汛,周晓辉,等.江苏盐城大丰滨海滩涂典型湿地土壤细菌群落结构分析[J].南京农业大学学报,2019,42(6):1108-1117.[doi:10.7685/jnau.201901047]
 LI Qiuxia,GUO Jiaxun,ZHOU Xiaohui,et al.Composition structure of soil bacterial community in typical wetland of tidal flat,Dafeng,Yancheng,Jiangsu Province[J].Journal of Nanjing Agricultural University,2019,42(6):1108-1117.[doi:10.7685/jnau.201901047]
点击复制

江苏盐城大丰滨海滩涂典型湿地土壤细菌群落结构分析()
分享到:

《南京农业大学学报》[ISSN:1000-2030/CN:32-1148/S]

卷:
42卷
期数:
2019年6期
页码:
1108-1117
栏目:
生物与环境
出版日期:
2019-11-15

文章信息/Info

Title:
Composition structure of soil bacterial community in typical wetland of tidal flat,Dafeng,Yancheng,Jiangsu Province
作者:
李秋霞 郭加汛 周晓辉 何也 刘叶楠 许斌 赵耕毛
南京农业大学资源与环境科学学院/江苏省海洋生物学重点实验室, 江苏 南京 210095
Author(s):
LI Qiuxia GUO Jiaxun ZHOU Xiaohui HE Ye LIU Yenan XU Bin ZHAO Gengmao
College of Resources and Environmental Sciences/Jiangsu Provincial Key Laboratory of Marine Biology, Nanjing Agricultural University, Nanjing 210095, China
关键词:
沿海滩涂湿地植被类型土壤细菌群落高通量测序
Keywords:
coastal beach wetlandvegetation typessoil bacterial communityhigh-throughput sequencing
分类号:
Q938.1+3
DOI:
10.7685/jnau.201901047
摘要:
[目的] 本文旨在研究江苏盐城大丰地区碱蓬湿地、芦苇湿地、互花米草湿地、盐蒿湿地和原始光滩等5种滨海湿地生境土壤细菌群落组成结构特征,阐明不同滨海湿地生境对土壤细菌群落的调控作用及驱动机制,为滨海湿地资源合理开发与生物多样性保护提供指导意义。[方法] 利用高通量测序技术对滨海湿地土壤细菌群落进行16S rRNA测序,利用微生物信息学方法对序列进行OTU (操作分类单元)聚类、物种注释、多样性指数、功能预测以及环境因子关联分析。[结果] 土壤细菌群落中特有细菌OTU种类数从大到小依次为盐蒿湿地、芦苇湿地、互花米草湿地、碱蓬湿地、原始光滩地;土壤细菌群落多样性指数从高到低依次为芦苇湿地、盐蒿湿地、互花米草湿地、原始光滩地、碱蓬湿地。盐生细菌群落结构变化,一部分受到全钾(TK)与碳素耦合作用影响,另一部分受到Na+与钠吸附比的影响。土壤中Na+、钠吸附比(SAR)、土壤多酚氧化酶(PPO)活性、土壤碱性磷酸酶(AKP)活性、全氮(TN)等是驱动细菌群落结构变化的主要环境因子;NH4+-N、PPO和AKP三者形成偶联关系,共同影响土壤细菌群落的生物多样性。[结论] 滨海湿地植被类型和主要环境因子在稳定土壤细菌群落结构及生物多样性方面起到关键作用。
Abstract:
[Objectives] Five kinds of wetlands in Dafeng,Yancheng,Jiangsu Province,including:Suaeda salsa wetland,Phragmites australis wetland,Spartina alterniflora wetland,Artemisia salina wetland and primordial beach,were studied on the soil bacterial community structure characteristics. The regulation and driving mechanism of different coastal wetland habitats on soil bacterial communities were elucidated to provide guidance for rational exploitation of coastal wetland resources and conservation of biodiversity.[Methods] High-throughput sequencing technology was used to sequence 16S rRNA of soil bacterial communities,and micro-informatics methods were used to perform operational taxonomic units(OTU)clustering,species annotation,diversity index,functional prediction and environmental factors correlation analysis.[Results] In the soil bacterial communities,the number of proper bacteria OTU from large to small were Artemisia salina wetland,Phragmites australis wetland,Spartina alterniflora wetland,Suaeda salsa wetland,primordial beach. The diversity indices of soil bacterial community from high to low were Phragmites australis wetland,Artemisia salina wetland,Spartina alterniflora wetland,primordial beach,Suaeda salsa wetland. The community structure of the salt-tolerant bacteria changes,some of which were affected by the coupling of total potassium(TK)and carbon,and the other part of which was affected by Na+ and sodium adsorption ratio(SAR). The changes in bacterial community structure were mainly driven by environmental factors such as Na+,sodium adsorption ratio,soil polyphenol oxidase(PPO)activity,soil alkaline phosphatase(AKP)activity,and total nitrogen(TN). And the diversity of soil bacterial communities were influenced by the coupling relationship among NH4+-N,PPO activity and AKP activity.[Conclusions] Coastal wetland vegetation types and major environmental factors played a key role in stabilizing soil bacterial community structure and biodiversity.

参考文献/References:

[1] 董科,吕士成,Terry Healy. 江苏盐城国家级珍禽自然保护区丹顶鹤的承载力[J]. 生态学报,2005,25(10):2608-2615. Dong K,Lü S C,Healy T. Carrying capacity of red-crowned cranes in the National Yancheng Rare Birds Nature Reserve,Jiangsu Province,China[J]. Acta Ecologica Sinica,2005,25(10):2608-2615(in Chinese with English abstract).
[2] 蒋炳兴. 江苏省盐城市的海涂资源及其开发利用[J]. 自然资源学报,1991,6(3):244-252. Jiang B X. The seabeach resources of Yancheng City,Jiangsu Province,and their exploitation and utilization[J]. Journal of Natural Resources,1991,6(3):244-252(in Chinese with English abstract).
[3] 王加连,刘忠权. 盐城滩涂生物多样性保护及其可持续利用[J]. 生态学杂志,2005,24(9):1090-1094. Wang J L,Liu Z Q. Protection and sustainable utilization for the biodiversity of Yancheng Seashore[J]. Chinese Journal of Ecology,2005,24(9):1090-1094(in Chinese with English abstract).
[4] 张晓祥,严长清,徐盼,等. 近代以来江苏沿海滩涂围垦历史演变研究[J]. 地理学报,2013,68(11):1549-1558. Zhang X X,Yan C Q,Xu P,et al. Historical evolution of tidal flat reclamation in the Jiangsu coastal areas[J]. Acta Geographica Sinica,2013,68(11):1549-1558(in Chinese with English abstract).
[5] 刘青松,李杨帆,朱晓东. 江苏盐城自然保护区滨海湿地生态系统的特征与健康设计[J]. 海洋学报,2003,25(3):143-148. Liu Q S,Li Y F,Zhu X D. Characteristics of coastal wetland ecosystems and their healthy design:a case study from Yancheng Natural Reserve,Jiangsu Province,China[J]. Acta Oceanologica Sinica,2003,25(3):143-148(in Chinese with English abstract).
[6] Ke C Q,Zhang D,Wang F Q,et al. Analyzing coastal wetland change in the Yancheng National Nature Reserve,China[J]. Regional Environmental Change,2011,11(1):161-173.
[7] 张忍顺,沈永明,陆丽云,等. 江苏沿海互花米草(Spartina alterniflora)盐沼的形成过程[J]. 海洋与湖沼,2005,36(4):358-366. Zhang R S,Shen Y M,Lu L Y,et al. Formation of Spartina alterniflora salt marsh on Jiangsu coast,China[J]. Oceanologia et Limnologia Sinica,2005,36(4):358-366(in Chinese with English abstract).
[8] 徐国万,卓荣宗. 我国引种互花米草的初步研究[C]//米花研究的进展——22年来的研究成果论文集. 南京:南京大学出版社,1985:212-225. Xu G W,Zhuo R Z. Preliminary studies of introduced spartina alteriflora Loisel in China[C]//Advances in Spartina alterniflora research:proceeding of research for 22 years. Nanjing:Nanjing University Press,1985:212-225(in Chinese).
[9] Boyle S A,Yarwood R R,Bottomley P J,et al. Bacterial and fungal contributions to soil nitrogen cycling under Douglas fir and red alder at two sites in Oregon[J]. Soil Biology and Biochemistry,2008,40(2):443-451.
[10] Attiwill P M,Adams M A. Nutrient cycling in forests[J]. New Phytol,1993,124(4):561-582.
[11] 王淼,曲来叶,马克明,等. 罕山土壤微生物群落组成对植被类型的响应[J]. 生态学报,2014,34(22):6640-6654. Wang M,Qu L Y,Ma K M,et al. Response of soil microbial community composition to vegetation types[J]. Acta Ecologica Sinica,2014,34(22):6640-6654(in Chinese with English abstract).
[12] Smith J L,Paul E A. The significance of soil microbial biomass estimations[M]//Soil Biochemistry. New York:Routledge,2017:357-398.
[13] Lin X G,Yin R,Zhang H Y,et al. Changes of soil microbiological properties caused by land use changing from rice-wheat rotation to vegetable cultivation[J]. Environmental Geochemistry and Health,2004,26(2):119-128.
[14] Noval R M,Burton O T,Wise P,et al. A Microbiota signature associated with experimental food allergy promotes allergic sensitization and anaphylaxis[J]. Journal of Allergy and Clinical Immunology,2013,131(1):201-212.
[15] Stackebrandt E,Fowler V J,Schubert W,et al. Towards a phylogeny of phototrophic purple sulfur bacteria:the genus Ectothiorhodospira[J]. Archives of Microbiology,1984,137(4):366-370.
[16] Ansede J H,Friedman R,Yoch D C. Phylogenetic analysis of culturable dimethyl sulfide-producing bacteria from a Spartina-dominated salt marsh and estuarine water[J]. Applied and Environmental Microbiology,2001,67(3):1210-1217.
[17] Bowditch R D,Baumann L,Baumann P. Description of Oceanospirillum kriegii sp. nov. and O.jannaschii sp. nov. and assignment of two species of Alteromonas to this genus as O.commune comb. nov. and O.vagum comb. nov[J]. Current Microbiology,1984,10(4):221-229.
[18] Liu H M,Wang B,Hu X K. Sediment bacterial communities are more complex in coastal shallow straits than in oceanic deep straits[J]. Journal of Oceanology and Limnology,2018,36(5):1643-1654.
[19] Wood S A,Gilbert J A,Leff J W,et al. Consequences of tropical forest conversion to oil palm on soil bacterial community and network structure[J]. Soil Biology and Biochemistry,2017,112:258-268.
[20] Menon R,Jackson C R,Holland M M. The influence of vegetation on microbial enzyme activity and bacterial community structure in freshwater constructed wetland sediments[J]. Wetlands,2013,33(2):365-378.
[21] Yang D W,Zhang M K. Effects of land-use conversion from paddy field to orchard farm on soil microbial genetic diversity and community structure[J]. European Journal of Soil Biology,2014,64:30-39.
[22] Lauber C L,Hamady M,Knight R,et al. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale[J]. Applied and Environmental Microbiology,2009,75(15):5111-5120.
[23] Louca S,Parfrey L W,Doebeli M. Decoupling function and taxonomy in the global ocean microbiome[J]. Science,2016,353(6305):1272-1277.
[24] Louca S,Doebeli M. Taxonomic variability and functional stability in microbial communities infected by phages[J]. Environmental Microbiology,2017,19(10):3863-3878.[LM]
[25] Fierer N,Lauber C L,Ramirez K S,et al. Comparative metagenomic,phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients[J]. The ISME Journal,2012,6(5):1007-1017.
[26] 李玲玲,郑西来,褚衍洋. 高盐度废水的生物除磷特性研究[J]. 中国给水排水,2009,25(17):73-75. Li L L,Zheng X L,Chu Y Y. Study on biological phosphorus removal from high salinity wastewater[J]. China Water & Wastewater,2009,25(17):73-75(in Chinese with English abstract).
[27] Pesaro M. Identification of novel Crenarchaeota and Euryarchaeota clusters associated with different depth layers of a forest soil[J]. FEMS Microbiology Ecology,2002,42(1):89-98.
[28] Poplawski A B,M?rtensson L,Wartiainen I,et al. Archaeal diversity and community structure in a swedish barley field:specificity of the EK510R/(EURY498)16S rDNA primer[J]. Journal of Microbiological Methods,2007,69(1):161-173.
[29] 王清奎,汪思龙,冯宗炜. 杉木人工林土壤可溶性有机质及其与土壤养分的关系[J]. 生态学报,2005,25(6):1299-1305. Wang Q K,Wang S L,Feng Z W. A study on dissolved organic carbon and nitrogen nutrients under Chinese fir plantation:relationships with soil nutrients[J]. Acta Ecologica Sinica,2005,25(6):1299-1305(in Chinese with English abstract).
[30] 左平,欧志吉,姜启吴,等. 江苏盐城原生滨海湿地土壤中的微生物群落功能多样性分析[J]. 南京大学学报(自然科学),2014,50(5):715-722. Zuo P,Ou Z J,Jiang Q W,et al. Function diversity of soil microbial communities in original coastal wetlands,Yancheng,Jiangsu Province[J]. Journal of Nanjing University(Natural Sciences Edition),2014,50(5):715-722(in Chinese with English abstract).
[31] Deng Y,He Z L,Xu M Y,et al. Elevated carbon dioxide alters the structure of soil microbial communities[J]. Applied and Environmental Microbiology,2012,78(8):2991-2995.
[32] 张雯雯. 滩涂土壤盐分梯度对微生物群落结构影响的研究[D]. 扬州:扬州大学,2009. Zhang W W. Study on the effect of salt gradient on microbial community structure in tidal flat soil[D]. Yangzhou:Yangzhou University,2009(in Chinese with English abstract).
[33] Gibbons S M. Microbial community ecology:function over phylogeny[J]. Nature Ecology & Evolution,2017,1:32.
[34] Faoro H,Alves A C,Souza E M,et al. Influence of soil characteristics on the diversity of bacteria in the southern Brazilian Atlantic forest[J]. Applied and Environmental Microbiology,2010,76(14):4744-4749.
[35] Wei Y,Wang Z Q,Zhang X Y,et al. Enzyme activities and microbial communities in subtropical forest soil aggregates to ammonium and nitrate-nitrogen additions[J]. Journal of Resources and Ecology,2017,8(3):258-267.
[36] Yu H Y,Ding W X,Luo J F,et al. Long-term effect of compost and inorganic fertilizer on activities of carbon-cycle enzymes in aggregates of an intensively cultivated sandy loam[J]. Soil Use and Management,2012,28(3):347-360.
[37] Waldrop M P,Zak D R,Sinsabaugh R L. Microbial community response to nitrogen deposition in northern forest ecosystems[J]. Soil Biology and Biochemistry,2004,36(9):1443-1451.
[38] Kunito T,Akagi Y,Park H D,et al. Influences of nitrogen and phosphorus addition on polyphenol oxidase activity in a forested andisol[J]. European Journal of Forest Research,2009,128(4):361-366.

备注/Memo

备注/Memo:
收稿日期:2019-01-28。
基金项目:江苏省重点研发计划项目(BE2017337);江苏省农业科技自主创新资金项目(CX[17]-1001)
作者简介:李秋霞,硕士研究生。
通信作者:赵耕毛,教授,主要从事滩涂生态学、盐土农业工程研究,E-mail:seawater@njau.edu.cn。
更新日期/Last Update: 1900-01-01