[1]陈小娟,刘铠鸣,宣明刚,等.增强作物耐盐胁迫能力的根际促生菌筛选、鉴定及田间应用效果[J].南京农业大学学报,2020,43(3):452-459.[doi:10.7685/jnau.201905003]
 CHEN Xiaojuan,LIU Kaiming,XUAN Minggang,et al.Screening and identification of plant growth-promoting rhizobacteria to enhance salt stress tolerance of crops and their effects in field experiment[J].Journal of Nanjing Agricultural University,2020,43(3):452-459.[doi:10.7685/jnau.201905003]
点击复制

增强作物耐盐胁迫能力的根际促生菌筛选、鉴定及田间应用效果()
分享到:

《南京农业大学学报》[ISSN:1000-2030/CN:32-1148/S]

卷:
43卷
期数:
2020年3期
页码:
452-459
栏目:
生物与环境
出版日期:
2020-05-10

文章信息/Info

Title:
Screening and identification of plant growth-promoting rhizobacteria to enhance salt stress tolerance of crops and their effects in field experiment
作者:
陈小娟 刘铠鸣 宣明刚 邵佳慧 张瑞福
南京农业大学江苏省固体有机废弃物资源化高技术研究重点实验室/江苏省有机固体废弃物协同创新中心/教育部资源节约型肥料工程技术研究中心, 江苏 南京 210095
Author(s):
CHEN Xiaojuan LIU Kaiming XUAN Minggang SHAO Jiahui ZHANG Ruifu
Jiangsu Provincial Key Lab of Solid Organic Waste Utlization/Jiangsu Collaborative Innoovation Center of Solid Organic Wastes/Educational Ministry Enginnering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, China
关键词:
盐胁迫植物根际促生菌微生物肥料小区试验玉米产量
Keywords:
salt stressplant growth-promoting rhizobacteriamicrobial fertilizerplot experimentmaize yield
分类号:
S144
DOI:
10.7685/jnau.201905003
摘要:
[目的]本文旨在从根际筛选能够增强植物耐盐胁迫能力的优良菌种,研制盐碱地专用微生物肥料,减轻作物盐胁迫伤害,增加作物产量。[方法]利用稀释涂布方法从9个滨海盐碱地根际土壤样品中分离得到快速生长的菌株,通过盐胁迫下玉米和小麦的盆栽试验筛选能增强植物耐盐胁迫的功能菌株,对其进行促生特性分析和16S rDNA系统鉴定,将菌剂与腐熟堆肥经二次发酵制成微生物有机肥,并在不同含盐量(3、4、5 g·L-1)的盐碱地上进行大田小区试验。[结果]从滩涂植物根际土壤分离筛选出2株能够增强玉米和小麦耐盐胁迫能力的根际促生菌T1-8和T4-9,接种菌株T1-8和T4-9可降低玉米叶片中可溶性总糖(TSS)、丙二醛(MDA)和全钠含量。系统鉴定结果显示:2株菌株皆为芽胞杆菌属(Bacillus sp.),分别为副地衣芽胞杆菌和巨大芽胞杆菌。菌株T1-8和T4-9均具有产氨、产吲哚乙酸(IAA)、产嗜铁素、解无机磷等能力,其中菌株T4-9发酵液中IAA含量达到60.82 mg·L-1。田间小区试验测产结果表明:与施用普通有机肥处理相比,施用含菌株T1-8和T4-9的微生物有机肥在3种含盐量土壤上均能显著增加玉米的产量,其中施加T1-8菌肥处理在含盐量为5 g·L-1地块增产效果最佳,产量增加1 026.2 kg·hm-2,增幅为26.70%;施加T4-9菌肥处理在含盐量为4 g·L-1地块效果最佳,产量增加703.6 kg·hm-2,增幅为17.04%。[结论]本研究筛选得到的根际促生芽胞杆菌T1-8和T4-9均能缓解植物盐胁迫伤害,研制的生物有机肥在盐碱地中能提高玉米的产量。
Abstract:
[Objectives] The purpose of this paper was to screen the efficient plant growth-promoting rhizobacteria which could enhance the salt tolerance of plants,and then develop special microbial fertilizers for saline-alkali soil for releasing salt stress injury and increasing the crop yields. [Methods] Two strains were isolated from rhizosphere soil samples by dilution and plating method. Pot experiments of maize and wheat under salt stress were conducted to screen the strains that could enhance salt tolerance of plants. The growth-promoting characteristics of the strains were analyzed and their phylogenetic identities were determined by 16S rDNA gene sequencing. The microbial organic fertilizers were prepared by solid fermentation in compost. The developed microbial organic fertilizers were tested for their efficiencies in field experiment. [Results] Two plant growth-promoting rhizobacteria strains were screened to enhance tolerance of maize and wheat under salt stress. Inoculating strains T1-8 and T4-9 could reduce TSS,MDA and Na+ contents in maize leaves. Strain T1-8 and T4-9 were both Bacillus sp.,and they were identified as Bacillus paralicheniformis and Bacillus megaterium respectively. Strain T1-8 and T4-9 had the ability to produce ammonia,IAA,siderophore and inorganic phosphorus. The IAA production of strain T4-9 reached 60.82 mg·L-1. The results of plot experiment showed that application of T1-8 and T4-9 based microbial organic fertilizers could significantly increase the yields of maize grown in fields with different salinity level. Strain T1-8 performed the best in 5 g·L-1 saline alkali soil. Yield was increased by 1 026.2 kg·hm-2,an increasing of 26.70%. The effect of applying strain T4-9 was the best in 4 g·L-1 saline alkali soil. Yield was increased by 703.6 kg·hm-2,an increase of 17.04%. [Conclusions] The strains screened in this study can alleviate salt stress injury of plants,and the developed microbial organic fertilizers can improve the maize yields in saline-alkali soils.

参考文献/References:

[1] 王遵亲,祝寿泉,俞仁培,等. 中国盐渍土[M]. 北京:科学出版社,1993. Wang Z Q,Zhu S Q,Yu R P,et al. Saline Soil in China[M]. Beijing:Science Press,1993(in Chinese).
[2] Gamalero E,Glick B R. Mechanisms used by plant growth-promoting bacteria[M]//Bacteria in Agrobiology:Plant Nutrient Management. Berlin,Heidelberg:Springer Berlin Heidelberg,2011:17-46.
[3] Glick B R. Plant growth-promoting bacteria:mechanisms and applications[J]. Scientifica,2012,2012:1-15.
[4] Weller D M,Thomashow L S. Current challenges in introducing beneficial microorganisms into the rhizosphere[M]//Molecular Ecology of Rhizosphere Microorganisms. Weinheim,Germany:Wiley-VCH Verlag GmbH,2007:1-18.
[5] Benizri E,Baudoin E,Guckert A. Root colonization by inoculated plant growth-promoting rhizobacteria[J]. Biocontrol Science and Technology,2001,11(5):557-574.
[6] Bais H P,Weir T L,Perry L G,et al. The role of root exudates in rhizosphere interactions with plants and other organisms[J]. Annual Review of Plant Biology,2006,57(1):233-266.
[7] Canbolat M Y,Bilen S,Çakmakç? R,et al. Effect of plant growth-promoting bacteria and soil compaction on barley seedling growth,nutrient uptake,soil properties and rhizosphere microflora[J]. Biology and Fertility of Soils,2006,42(4):350-357.
[8] Bhattacharyya P N,Jha D K. Plant growth-promoting rhizobacteria(PGPR):emergence in agriculture[J]. World Journal of Microbiology and Biotechnology,2012,28(4):1327-1350.
[9] Bhardwaj D,Ansari M,Sahoo R,et al. Biofertilizers function as key player in sustainable agriculture by improving soil fertility,plant tolerance and crop productivity[J]. Microbial Cell Factories,2014,13(1):66.
[10] Butcher R A,Schroeder F C,Fischbach M A,et al. The identification of bacillaene,the product of the PksX megacomplex in Bacillus subtilis[J]. Proc Natl Acad Sci USA,2007,104(5):1506-1509.
[11] Sharapov V M,Kalvish T K. Effect of soil fungistasis on zoopathogenic fungi[J]. Mycopathologia,1984,85(1/2):121-128.
[12] Lee S W,Lee S H,Balaraju K,et al. Growth promotion and induced disease suppression of four vegetable crops by a selected plant growth-promoting rhizobacteria(PGPR)strain Bacillus subtilis 21-1 under two different soil conditions[J]. Acta Physiologiae Plantarum,2014,36(6):1353-1362.
[13] 李庆康,张永春,杨其飞,等. 生物有机肥肥效机理及应用前景展望[J]. 中国生态农业学报,2003,11(2):78-80. Li Q K,Zhang Y C,Yang Q F,et al. The concept,mechanism,affecting factors and prospect of applying bio-organic fertilizer[J]. Chinese Journal of Eco-Agriculture,2003,11(2):78-80(in Chinese with English abstract).
[14] 胡高峰,张小勇,莫海涛,等. 抗盐碱制剂对棉花幼苗生理生化特性的影响[J]. 西北农业学报,2009,18(2):169-172. Hu G F,Zhang X Y,Mo H T,et al. The effects of resistance salt-alkaline preparation on the characters of physiological and biochemical index of cotton seedling[J]. Acta Agriculturae Boreali-Occidentalis Sinica,2009,18(2):169-172(in Chinese with English abstract).
[15] 王善仙,刘宛,李培军,等. 生物有机肥调控对盐碱胁迫下向日葵幼苗生长及生理指标的影响[J]. 生态学杂志,2011,30(4):682-688. Wang S X,Liu W,Li P J,et al. Regulation effects of bioorganic fertilizer on sunflower seedlings growth and leaf physiological indices under salt-alkali stress[J]. Chinese Journal of Ecology,2011,30(4):682-688(in Chinese with English abstract).
[16] 张金柱. 生物有机肥对盐碱土理化性质及苜蓿生理反应影响的研究[D]. 哈尔滨:东北农业大学,2007. Zhang J Z. Effect of microbial organic fertilizer on physicochemical property of saline alkali soil and physiologic reaction of alfalfa[D]. Harbin:Northeast Agricultural University,2007(in Chinese with English abstract).
[17] 朱培淼,杨兴明,徐阳春,等. 高效解磷细菌的筛选及其对玉米苗期生长的促进作用[J]. 应用生态学报,2007,18(1):107-112. Zhu P M,Yang X M,Xu Y C,et al. High effective phosphate-solubilizing bacteria:their isolation and promoting effect on corn seedling growth[J]. Chinese Journal of Applied Ecology,2007,18(1):107-112(in Chinese with English abstract).
[18] Howson S J,Davis R P. Production of phytate-hydrolysing enzyme by some fungi[J]. Enzyme and Microbial Technology,1983,5(5):377-382.
[19] Schwyn B,Neilands J B. Universal chemical assay for the detection and determination of siderophores[J]. Analytical Biochemistry,1987,160(1):47-56.
[20] Murashige T,Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures[J]. Physiologia Plantarum,1962,15(3):473-497.
[21] 陈淋. 解淀粉芽孢杆菌SQR9增强植物耐盐能力的机制研究[D]. 南京:南京农业大学,2016. Chen L. Mechanism of enhanced plant salt tolerance by Bacillus amyloliquefaciens SQR9[D]. Nanjing:Nanjing Agricultural University,2016(in Chinese with English abstract).
[22] Dye D W. The inadequacy of the usual determinative tests for the identification of Xanthomonas spp.[J]. New Zealand Journal of Science,1962,5(4):393-416.
[23] 康贻军,程洁,梅丽娟,等. 植物根际促生菌作用机制研究进展[J]. 应用生态学报,2010,21(1):232-238. Kang Y J,Cheng J,Mei L J,et al. Action mechanisms of plant growth-promoting rhizobacteria(PGPR):a review[J]. Chinese Journal of Applied Ecology,2010,21(1):232-238(in Chinese with English abstract).
[24] 林天兴,唐梅,黄明远,等. 高产铁载体棉田土壤细菌SS05的筛选与鉴定[J]. 微生物学通报,2012,39(5):668-676. Lin T X,Tang M,Huang M Y,et al. Screening and identification of a high yield sideropho-resproducing bacteria SS05 isolated from cotton soil[J]. Microbiology China,2012,39(5):668-676(in Chinese with English abstract).
[25] Glickmann E,Dessaux Y. A critical examination of the specificity of the salkowski reagent for indolic compounds produced by phytopathogenic bacteria[J]. Applied and Environmental Microbiology,1995,61(2):793-796.
[26] Son H J,Park G T,Cha M S,et al. Solubilization of insoluble inorganic phosphates by a novel salt- and pH-tolerant Pantoea agglomerans R-42 isolated from soybean rhizosphere[J]. Bioresource Technology,2006,97(2):204-210.
[27] 康贻军,胡健,单君,等. 两株解磷真菌的解磷能力及其解磷机理的初步研究[J]. 微生物学通报,2006,33(5):22-27. Kang Y J,Hu J,Shan J,et al. Solubilization capacity of insoluble phosphates and its mechanismby two phosphate solubilizing fungi(PSF)[J]. Microbiology China,2006,33(5):22-27(in Chinese with English abstract).
[28] 李引,虞丽,李辉信,等. 一株花生根际促生菌的筛选鉴定及其特性研究[J]. 生态与农村环境学报,2012,28(4):416-421. Li Y,Yu L,Li H X,et al. Isolation,identification and characteristics of a peanut growth-promoting strain of rhizobacteria[J]. Journal of Ecology and Rural Environment,2012,28(4):416-421(in Chinese with English abstract).
[29] Kumar S,Stecher G,Tamura K. MEGA7:molecular evolutionary genetics analysis version 7.0 for bigger datasets[J]. Molecular Biology and Evolution,2016,33(7):1870-1874.
[30] 刘军辉,李利. 我国微生物肥的应用研究进展[J]. 河北果树,2018(5):5-6. Liu J H,Li L. Research advances on application of microbial fertilizers in China[J]. Hebei Fruits,2018(5):5-6(in Chinese).
[31] 姜焕焕,王通,陈娜,等. 根际促生菌提高植物抗盐碱性的研究进展[J]. 生物技术通报,2019(10):189-197. Jiang H H,Wang T,Chen N,et al. Research progress in PGPR improving plant’s resistance to salt and alkali[J]. Biotechnology Bulletin,2019(10):189-197(in Chinese with English abstract).
[32] 汪立梅,桂丕,李化山,等. 改良剂与微生物菌剂联合施用对盐碱地土壤和耐盐植物的影响[J]. 江苏农业科学,2018,46(17):264-269. Wang L M,Gui P,Li H S,et al. Effects of combined application of improver and microbial agents on saline-alkali soil and salt-tolerant plants[J]. Jiangsu Agricultural Sciences,2018,46(17):264-269(in Chinese with English abstract).
[33] 黄铖程. 复合微生物菌肥对盐碱地燕麦与箭筈豌豆生理特性及土壤速效养分的影响[D]. 呼和浩特:内蒙古农业大学,2018. Huang C C. The effect of the compound microbial fertilizer on the physiological characteristics of oats and Vicia sativa and soil available nutrient in saline-alkali land[D]. Hohhot:Inner Mongolia Agricultural University,2018(in Chinese with English abstract).

相似文献/References:

[1]陈丽芳,陆巍,孙锦,等.外源亚精胺对盐胁迫下黄瓜幼苗光合作用和根叶碳水化合物积累的影响[J].南京农业大学学报,2011,34(3):31.[doi:10.7685/j.issn.1000-2030.2011.03.006]
 CHEN Li-fang,LU Wei,SUN Jin,et al.Effects of exogenous spermidine on photosynthesis and carbohydrate accumulation in roots and leaves of cucumber(Cucumis sativus L.) seedlings under salt stress[J].Journal of Nanjing Agricultural University,2011,34(3):31.[doi:10.7685/j.issn.1000-2030.2011.03.006]
[2]沈嵘,刘晓宇,张红晓,等.Zn2+对高盐和紫外线胁迫条件下水稻根尖细胞程序性死亡的影响[J].南京农业大学学报,2010,33(2):13.[doi:10.7685/j.issn.1000-2030.2010.02.003]
 SHEN Rong,LIU Xiao-yu,ZHANG Hong-xiao,et al.Effects of Zn^{2+} on rice root tip cells programmed cell death under high salt stress or UV-induced[J].Journal of Nanjing Agricultural University,2010,33(3):13.[doi:10.7685/j.issn.1000-2030.2010.02.003]
[3]黄本开,刘开力,徐晟,等.一氧化氮供体对盐胁迫下水稻幼苗叶片脂质过氧化的调节[J].南京农业大学学报,2005,28(3):22.[doi:10.7685/j.issn.1000-2030.2005.03.005]
[4]刘俊,张艳艳,章文华,等.大麦根中多胺含量和转化与耐盐性的关系[J].南京农业大学学报,2005,28(2):0.[doi:10.7685/j.issn.1000-2030.2005.02.002]
[5]陈沁,刘友良,陈亚华.盐胁迫下大麦叶片的活性氧伤害与液泡膜H~+-ATPase活性的关系[J].南京农业大学学报,1998,21(3):21.[doi:10.7685/j.issn.1000-2030.1998.03.004]
 Chen Qin,Liu Youliang,Chen Yahua.Relationship between active oxygen damage and tonoplast H +-ATPase activity in leaves of barley seedling under salt stress[J].Journal of Nanjing Agricultural University,1998,21(3):21.[doi:10.7685/j.issn.1000-2030.1998.03.004]
[6]李长润,刘友良.盐胁迫下小麦幼苗离子吸收运输的选择性与叶片耐盐量[J].南京农业大学学报,1993,16(1):16.[doi:10.7685/j.issn.1000-2030.1993.01.003]
 Li Changrun Liu Youliang.STUDIES ON K~+,Na~+ SELECTIVITY DURING ION UPTAKE AND TRANSPORT AND SALT TOLERANCE OF LEAF CELLS OF WHEAT SEEDLINGS UNDER SALT STRESS CONDITIONS[J].Journal of Nanjing Agricultural University,1993,16(3):16.[doi:10.7685/j.issn.1000-2030.1993.01.003]
[7]毛才良,刘友良.盐胁迫大麦苗体内的 Na~+ K~+分配与叶片耐盐量[J].南京农业大学学报,1990,13(3):32.[doi:10.7685/j.issn.1000-2030.1990.03.005]
 Mao Cailiang Liu Youliang.THE DISTRIBUTION OF Na~+ K~+AND SALT CONTENT TOLERATED BY LEAF IN BARLEY SEEDLING UNDER SALT STRESS[J].Journal of Nanjing Agricultural University,1990,13(3):32.[doi:10.7685/j.issn.1000-2030.1990.03.005]
[8]朱速松,刘友良.6-苄基腺嘌呤对大麦耐盐性的调节机理[J].南京农业大学学报,1996,19(3):12.[doi:10.7685/j.issn.1000-2030.1996.03.003]
 Zhu Susong,Liu Youliang.MECHANISM OF BARLEY SALT TOLERANCE REGULATED BY 6 BENZYLADENINE[J].Journal of Nanjing Agricultural University,1996,19(3):12.[doi:10.7685/j.issn.1000-2030.1996.03.003]
[9]张振兴,孙锦,郭世荣*,等.增施钙素对盐胁迫下西瓜幼苗生长和可溶性蛋白含量及组分的影响[J].南京农业大学学报,2011,34(5):20.[doi:10.7685/j.issn.1000-2030.2011.05.004]
 ZHANG Zhen-xing,SUN Jin,GUO Shi-rong*,et al.Effect of supplementary calcium on the growth and the content and components of soluble protein of watermelon seedlings under salt-stress[J].Journal of Nanjing Agricultural University,2011,34(3):20.[doi:10.7685/j.issn.1000-2030.2011.05.004]
[10]王丽萍,郭世荣,孙锦,等.Ca(NO3)2和NaCl胁迫下耐盐砧木嫁接黄瓜光合特性及碳同化关键酶基因表达分析[J].南京农业大学学报,2012,35(3):31.[doi:10.7685/j.issn.1000-2030.2012.03.006]
 WANG Li-ping,GUO Shi-rong,SUN Jin,et al.Analysis of photosynthetic characteristics and key enzyme genes expression of carbon assimilation in cucumber by grafting onto salt-tolerant rootstock under iso-osmotic Ca(NO3)2or NaCl stress[J].Journal of Nanjing Agricultural University,2012,35(3):31.[doi:10.7685/j.issn.1000-2030.2012.03.006]

备注/Memo

备注/Memo:
收稿日期:2019-05-04。
基金项目:国家重点研发计划项目(2017YFD0200800)
作者简介:陈小娟,硕士研究生。
通信作者:张瑞福,教授,研究方向为根际微生物与微生物肥料,E-mail:rfzhang@njau.edu.cn。
更新日期/Last Update: 1900-01-01