[1]刘婷,文涛,赵梦丽,等.番茄根际代谢物抵御茄科劳尔氏菌入侵机制研究[J].南京农业大学学报,2020,43(3):460-467.[doi:10.7685/jnau.201905051]
 LIU Ting,WEN Tao,ZHAO Mengli,et al.The mechanisms of tomato rhizosphere metabolites resistance to Ralstonia solanacearum invasion[J].Journal of Nanjing Agricultural University,2020,43(3):460-467.[doi:10.7685/jnau.201905051]
点击复制

番茄根际代谢物抵御茄科劳尔氏菌入侵机制研究()
分享到:

《南京农业大学学报》[ISSN:1000-2030/CN:32-1148/S]

卷:
43卷
期数:
2020年3期
页码:
460-467
栏目:
生物与环境
出版日期:
2020-05-10

文章信息/Info

Title:
The mechanisms of tomato rhizosphere metabolites resistance to Ralstonia solanacearum invasion
作者:
刘婷 文涛 赵梦丽 张媛 张超 袁军 沈其荣
南京农业大学资源与环境科学学院/江苏省固体有机废弃物资源化高技术研究重点实验室/江苏省有机固体废弃物 资源化协同创新中心/国家有机类肥料工程技术研究中心, 江苏 南京 210095
Author(s):
LIU Ting WEN Tao ZHAO Mengli ZHANG Yuan ZHANG Chao YUAN Jun SHEN Qirong
College of Resources and Environmental Sciences/Jiangsu Provincial Key Lab of Solid Organic Waste Utilization/Jiangsu Collaborative Innovation Center of Solid Organic Wastes/National Engineering Research Center for Organic-Based Fertilizers, Nanjing Agricultural University, Nanjing 210095, China
关键词:
番茄茄科劳尔氏菌根际代谢物气相色谱-质谱分析抑病机制
Keywords:
tomatoRalstonia solanacearumrhizosphere metabolitesgas chromatography-mass spectrometry(GC-MS)mechanism of disease inhibition
分类号:
S147.5
DOI:
10.7685/jnau.201905051
摘要:
[目的]本文旨在研究茄科劳尔氏菌与番茄根际代谢物的互作关系,明确根际代谢物抵御茄科劳尔氏菌的入侵机制,为防控番茄青枯病和番茄绿色生产提供理论依据和关键技术。[方法]收集健康和发病番茄根际土壤样品,通过气相色谱-质谱(GC-MS)分析比较两者间根际代谢物的组分差异。分别在纯培养(作为辅助碳源和唯一基础碳源)和根际条件下,研究差异根际代谢物对茄科劳尔氏菌生长及定殖的影响。[结果]健康和发病番茄根际代谢物在组分和含量上存在显著差异。健康番茄根际显著富集的代谢物有果糖、蔗糖、肌醇半乳糖苷、蜜二糖、龙胆二糖;发病番茄根际显著富集的代谢物有皮质醇、四氢皮质醇、明串珠菌二糖、2,3-二甲基琥珀酸、角鲨烯、葡萄糖酸。纯培养试验发现:蔗糖、果糖和蜜二糖作为辅助碳源时不会直接抑制茄科劳尔氏菌生长,而作为唯一碳源时无法供茄科劳尔氏菌生长。根际添加试验发现,蔗糖、果糖和蜜二糖处理显著降低茄科劳尔氏菌在番茄根部定殖数量,并同时显著增加番茄根部总细菌的数量。[结论]番茄根际代谢物组分和含量与番茄健康状况有关。健康番茄根际富集的蔗糖、果糖和蜜二糖可能通过大量培育其他根际微生物的生长来抵御茄科劳尔氏菌的定殖。
Abstract:
[Objectives] In order to provide theoretical basis and key technologies for the prevention of tomato bacterial wilt,the resistance mechanism of tomato rhizosphere metabolites against Ralstonia solanacearum was studied in this study. [Methods] Rhizosphere soil samples of healthy and diseased tomato were collected and analyzed by gas chromatography-mass spectrometry(GC-MS)to compare the components of rhizosphere metabolites. The effects of differential content rhizosphere metabolites on the growth and colonization of R. solanacearum were studied under pure culture(as the supplementary carbon source and the sole carbon source)and rhizosphere conditions,respectively. [Results] There were significant differences in components of rhizosphere metabolomes between healthy and diseased tomato samples. Fructose,sucrose,galactinol,melibiose and gentiobiose were significantly enriched in the healthy tomato rhizosphere. Hydrocortisone,tetrahydrocorticosterone,leucrose,2,3-dimethylsuccinic acid,squalene and gluconic acid were significantly enriched in the diseased tomato rhizosphere. Pure culture experiments found that these three substances(sucrose,fructose and melibiose)as the supplementary carbon source did not inhibit the growth of R. solanacearum and R. solanacearum could not directly use these three substances as the sole carbon source. Rhizosphere application experiments showed that these three substances not only significantly reduced the population of R. solanacearum,but also increased the bacterial population in tomato roots. [Conclusions] The components and contents of metabolites in tomato rhizosphere are related to the health status of tomato. Sucrose,fructose,and melibiose enriched in the rhizosphere soils of healthy tomato may resist the colonization of pathogens by cultivating the growth of other rhizosphere microorganisms.

参考文献/References:

[1] 林涛,祝光涛,张俊红,等. 基因组分析揭示番茄育种的历史[J]. 遗传,2014,36(12):1275-1276. Lin T,Zhu G T,Zhang J H,et al. Genome analysis reveals the history of tomato breeding[J]. Hereditas,2014,36(12):1275-1276(in Chinese).
[2] 罗伟林,曾敬富,王萍,等. 番茄青枯病的诊断与综合防控[J]. 现代农业科技,2010(6):179. Luo W L,Zeng J F,Wang P,et al. Diagnosis and comprehensive control of tomato bacterial wilt[J]. Modern Agricultural Sciences and Technology,2010(6):179(in Chinese).
[3] Lebeau A,Daunay M C,FraryA,et al. Bacterial wilt resistance in tomato,pepper,and eggplant:genetic resources respond to diverse strains in the Ralstonia solanacearum species complex[J]. Phytopathology,2011,101(1):154-165.
[4] 李焕玲. 番茄青枯病的发生与综合防治技术[J]. 北方园艺,2014(5):54-56. Li H L. Occurrence and integrated control technology of tomato bacterial wilt[J]. Northern Horticulture,2014(5):54-56(in Chinese).
[5] Wei Z,Yang X M,Yin S X,et al. Efficacy of Bacillus-fortified organic fertiliser in controlling bacterial wilt of tomato in the field[J]. Applied Soil Ecology,2011,48(2):152-159.
[6] Ji X L,Lu G B,Gai Y P,et al. Biological control against bacterial wilt and colonization of mulberry by an endophytic Bacillus subtilis strain[J]. FEMS Microbiology Ecology,2008,65(3):565-573.
[7] Baetz U,Martinoia E. Root exudates:the hidden part of plant defense[J]. Trends in Plant Science,2014,19(2):90-98.
[8] Badri D V,Vivanco J M. Regulation and function of root exudates[J]. Plant,Cell & Environment,2009,32(6):666-681.
[9] Huang X F,Chaparro J M,Reardon K F,et al. Rhizosphere interactions:root exudates,microbes,and microbial communities[J]. Botany,2014,92(4):267-275.
[10] 刘苹,江丽华,万书波,等. 花生根系分泌物对根腐镰刀菌和固氮菌的化感作用研究[J]. 中国农业科技导报,2009,11(4):107-111. Liu P,Jiang L H,Wan S B,et al. Studies on allelopathy of peanut root exudates on root rot fungi and N-fixing bacteria[J]. Journal of Agricultural Science and Technology,2009,11(4):107-111(in Chinese with English abstract).
[11] Yao J,Allen C. Chemotaxis is required for virulence and competitive fitness of the bacterial wilt pathogen Ralstonia solanacearum[J]. Journal of Bacteriology,2006,188(10):3697-3708.
[12] 王茹华,张启发,周宝利,等. 浅析植物根系分泌物与根际微生物的相互作用关系[J]. 土壤通报,2007,38(1):167-172. Wang R H,Zhang Q F,Zhou B L,et al. Analysis on the interaction between root exudates and rhizosphere microbes[J]. Chinese Journal of Soil Science,2007,38(1):167-172(in Chinese with English abstract).
[13] Zhang N,Wang D D,Liu Y P,et al. Effects of different plant root exudates and their organic acid components on chemotaxis,biofilm formation and colonization by beneficial rhizosphere-associated bacterial strains[J]. Plant and Soil,2014,374(1/2):689-700.
[14] 李汛,段增强. 植物根系分泌物的研究方法[J]. 基因组学与应用生物学,2013,32(4):540-547. Li X,Duan Z Q. Progress on the research methods for root exudates[J]. Genomics and Applied Biology,2013,32(4):540-547(in Chinese with English abstract).
[15] 罗庆. 镉、铅胁迫下东南景天根系分泌物的代谢组学研究[D]. 沈阳:东北大学,2016. Luo Q. Metabolomics study on root exudates of Sedum alfredii under Cd and Pb stress[D]. Shenyang:Northeastern University,2016(in Chinese with English abstract).
[16] van Dam N M,Bouwmeester H J. Metabolomics in the rhizosphere:tapping into belowground chemical communication[J]. Trends in Plant Science,2016,21(3):256-265.
[17] Tan S Y,Gu Y A,Yang C L,et al. Bacillus amyloliquefaciens T-5 may prevent Ralstonia solanacearum infection through competitive exclusion[J]. Biology and Fertility of Soils,2016,52(3):341-351.
[18] Bonilla N,Cazorla F M,Martínez-Alonso M,et al. Organic amendments and land management affect bacterial community composition,diversity and biomass in avocado crop soils[J]. Plant and Soil,2012,357(1/2):215-226.
[19] Kind T,Wohlgemuth G,Lee D Y,et al. FiehnLib:mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry[J]. Analytical Chemistry,2009,81(24):10038-10048.
[20] 吴志刚,宋明,王志敏,等. 番茄组织培养中无菌苗培养条件的优化[J]. 中国农学通报,2006,22(4):335-337. Wu Z G,Song M,Wang Z M,et al. Condition optimization for culturing sterile tomato plants in tissue culture[J]. Chinese Agricultural Science Bulletin,2006,22(4):335-337(in Chinese with English abstract).
[21] Yuan J,Zhao J,Wen T,et al. Root exudates drive the soil-borne legacy of aboveground pathogen infection[J]. Microbiome,2018,6:156.
[22] 刘鹏飞,胡志宏,代探,等. 代谢组学-植物病理学研究有力的生物分析工具[J]. 植物病理学报,2018,48(4):433-444. Liu P F,Hu Z H,Dai T,et al. Metabolomics-a robust bioanalytical approach for phytopathology[J]. Acta Phytopathologica Sinica,2018,48(4):433-444(in Chinese with English abstract).
[23] Sade D G,Shriki O,Cuadros-Inostroza A,et al. Comparative metabolomics and transcriptomics of plant response to tomato yellow leaf curl virus infection in resistant and susceptible tomato cultivars[J]. Metabolomics,2015,11(1):81-97.
[24] 邱文龙. 不同品种烟草根系分泌物的组分分析与抗黑胫病的关系[D]. 泰安:山东农业大学,2014. Qiu W L. Researches on the relationship between root exudates of different flue-cured tobacco varieties and resistant of black shank disease[D]. Tai’an:Shandong Agricultural University,2014(in Chinese with English abstract).
[25] Gu Y A,Wei Z,Wang X Q,et al. Pathogen invasion indirectly changes the composition of soil microbiome via shifts in root exudation profile[J]. Biology and Fertility of Soils,2016,52(7):997-1005.
[26] 吴玉香,沈晓佳,房卫平,等. 陆地棉根系分泌物对黄萎病菌生长发育的影响[J]. 棉花学报,2007,19(4):286-290. Wu Y X,Shen X J,Fang W P,et al. The effects of cotton root exudates on growth and development of Verticillium dahliae[J]. Cotton Science,2007,19(4):286-290(in Chinese with English abstract).
[27] Nannipieri P,Ascher J,Ceccherini M T,et al. Molecular Mechanisms of Plant and Microbe Coexistence[M]. Heidelberg:Springer,2008:339-365.
[28] Hibbing M E,Fuqua C,Parsek M R,et al. Bacterial competition:surviving and thriving in the microbial jungle[J]. Nature Reviews Microbiology,2010,8(1):15-25.
[29] 寿森炎,冯壮志,陈旭艇,等. 壳聚糖诱导番茄抗青枯病的作用[J]. 植物保护学报,2005,32(2):120-124. Shou S Y,Feng Z Z,Chen X T,et al. Tomato resistance to Ralstonia solanacearum induced by chitosan[J]. Journal of Plant Protection,2005,32(2):120-124(in Chinese with English abstract).
[30] 董月. 解淀粉芽孢杆菌T-5与青枯菌对番茄根系分泌物的竞争及机理研究[D]. 南京:南京农业大学,2014. Dong Y. Mechanism of Bacillus amylolyquefaciens T-5 competition for tomato root exudates with Ralstonia solanacearum[D]. Nanjing:Nanjing Agricultural University,2014(in Chinese with English abstract).

相似文献/References:

[1]卢颖林,李庆余,徐新娟,等.全根和分根培养条件下番茄幼苗对不同形态氮素的响应[J].南京农业大学学报,2010,33(6):43.[doi:10.7685/j.issn.1000-2030.2010.06.009]
 LU Ying-lin,LI Qing-yu,XU Xin-juan,et al.Responses of tomato seedling to different nitrogen forms supplied by either homogenous or localized culture[J].Journal of Nanjing Agricultural University,2010,33(3):43.[doi:10.7685/j.issn.1000-2030.2010.06.009]
[2]刘杨,陈火英,魏毓棠.番茄SSR遗传连锁图谱的构建及每序花数性状的QTL定位[J].南京农业大学学报,2005,28(4):30.[doi:10.7685/j.issn.1000-2030.2005.04.007]
[3]张子学,侯喜林,范进展.3 种茄科蔬菜相互嫁接的综合效应探讨[J].南京农业大学学报,2003,26(2):16.[doi:10.7685/j.issn.1000-2030.2003.02.004]
 ZHANG Zi xue,HOU Xi lin,FAN Jin zhan.The comprehensive effects on mutual grafting in three kinds of Solanaceac vegetables[J].Journal of Nanjing Agricultural University,2003,26(3):16.[doi:10.7685/j.issn.1000-2030.2003.02.004]
[4]任欣正,申道林,谢贻格.番茄青枯病的生物防治[J].南京农业大学学报,1993,16(1):45.[doi:10.7685/j.issn.1000-2030.1993.01.008]
 Ren Xinzheng Shen Daolin Xie Yige.BIOLOGICAL CONTROL OF TOMATO WILT[J].Journal of Nanjing Agricultural University,1993,16(3):45.[doi:10.7685/j.issn.1000-2030.1993.01.008]
[5]张春兰,张耀栋,吕烈武,等.不同品种番茄嫁接植株间吸钾特性差异的研究[J].南京农业大学学报,1995,18(3):72.[doi:10.7685/j.issn.1000-2030.1995.03.013]
 Zhang Chunlan,Zhang Yaodong,Lu Liewu,et al.ON THE POTASSIUM UPTAKE OF THE GRAFT PLANTS OF DIFFERENT VARIETIES OF TOMATO[J].Journal of Nanjing Agricultural University,1995,18(3):72.[doi:10.7685/j.issn.1000-2030.1995.03.013]
[6]王艳,龚义勤,赵统敏,等.番茄SRAP-PCR体系优化与品种分子鉴定[J].南京农业大学学报,2007,30(1):23.[doi:10.7685/j.issn.1000-2030.2007.01.005]
 WANG Yan,GONG Yi-qin,ZHAO Tong-min,et al.Optimization of SRAP-PCR system and cultivar molecular identification in tomato(Lycopersicon esculentum L.)[J].Journal of Nanjing Agricultural University,2007,30(3):23.[doi:10.7685/j.issn.1000-2030.2007.01.005]
[7]肖同建,陈芳,朱震,等.不同根际细菌对南方根结线虫抑制效果的研究[J].南京农业大学学报,2011,34(4):59.[doi:10.7685/j.issn.1000-2030.2011.04.011]
 XIAO Tong-jian,CHEN Fang,ZHU Zhen,et al.Effect of different rhizobacteria on suppression root-knot nematode (Meloidogyne incognita)of tomato[J].Journal of Nanjing Agricultural University,2011,34(3):59.[doi:10.7685/j.issn.1000-2030.2011.04.011]
[8]黑银秀,朱为民,郭世荣,等.核黄素和接种番茄黄化曲叶病毒对番茄几丁质酶和β-1,3-葡聚糖酶活性的影响[J].南京农业大学学报,2012,35(4):135.[doi:10.7685/j.issn.1000-2030.2012.04.025]
 HEI Yin-xiu,ZHU Wei-min,GUO Shi-rong,et al.Effects of riboflavin and TYLCV inoculation on the activities of chitinase and β-1,3-glucanase in tomato[J].Journal of Nanjing Agricultural University,2012,35(3):135.[doi:10.7685/j.issn.1000-2030.2012.04.025]
[9]于力,郭世荣,阎君,等.BTH处理对番茄幼苗TYLCV抗性、光合特性及防御酶活性的影响[J].南京农业大学学报,2012,35(6):1.[doi:10.7685/j.issn.1000-2030.2012.06.001]
 YU Li,GUO Shi-rong,YAN Jun,et al.Effects of BTH on TYLCV resistance,photosynthetic characteristics and related defense enzymes of tomato seedlings[J].Journal of Nanjing Agricultural University,2012,35(3):1.[doi:10.7685/j.issn.1000-2030.2012.06.001]
[10]柴喜荣,程智慧,孟焕文,等.追肥对农业废弃物有机基质栽培番茄生长发育和养分吸收的影响[J].南京农业大学学报,2013,36(2):20.[doi:10.7685/j.issn.1000-2030.2013.02.004]
 CHAI Xirong,CHENG Zhihui,MENG Huanwen,et al.Influence of top dressing on growth and nutrient absorption of tomato cultivated in organic substrate mixed with agricultural residue[J].Journal of Nanjing Agricultural University,2013,36(3):20.[doi:10.7685/j.issn.1000-2030.2013.02.004]

备注/Memo

备注/Memo:
收稿日期:2019-05-29。
基金项目:国家自然科学基金青年基金项目(31902107);江苏省自然科学基金项目(BK20170724);国家公益性行业(农业)科研专项(201503110)
作者简介:刘婷,硕士研究生。
通信作者:袁军,讲师,主要从事土壤微生物与植物互作研究,E-mail:junyuan@njau.edu.cn。
更新日期/Last Update: 1900-01-01