[1]赵熙君,冷雪梅,张旭辉,等.生物质炭施用对重金属污染水稻土有机碳矿化的影响[J].南京农业大学学报,2020,43(3):468-476.[doi:10.7685/jnau.201904050]
 ZHAO Xijun,LENG Xuemei,ZHANG Xuhui,et al.Effect of biochar addition on soil organic carbon mineralization in a heavy metal-contaminated paddy soil[J].Journal of Nanjing Agricultural University,2020,43(3):468-476.[doi:10.7685/jnau.201904050]
点击复制

生物质炭施用对重金属污染水稻土有机碳矿化的影响()
分享到:

《南京农业大学学报》[ISSN:1000-2030/CN:32-1148/S]

卷:
43卷
期数:
2020年3期
页码:
468-476
栏目:
生物与环境
出版日期:
2020-05-10

文章信息/Info

Title:
Effect of biochar addition on soil organic carbon mineralization in a heavy metal-contaminated paddy soil
作者:
赵熙君 冷雪梅 张旭辉 应多 刘晓雨 郑聚锋 卞荣军 李恋卿 潘根兴
南京农业大学农业资源与生态环境研究所, 江苏 南京 210095
Author(s):
ZHAO Xijun LENG Xuemei ZHANG Xuhui YING Duo LIU Xiaoyu ZHENG Jufeng BIAN Rongjun LI Lianqing PAN Genxing
Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
关键词:
生物质炭重金属污染水稻土有机碳矿化激发效应
Keywords:
biocharheavy metal pollutionpaddy soilorganic carbon mineralizationpriming effect
分类号:
S153.6
DOI:
10.7685/jnau.201904050
摘要:
[目的]本文旨在研究重金属污染土壤施用生物质炭后对土壤有机碳稳定性的影响,为环境污染修复条件下土壤有机碳库的科学管理提供参考。[方法]以苏南地区长期Cd/Pb污染和邻近未污染水稻土为研究对象,采集对照无污染土壤(P0)、低污染土壤(P1)和高污染土壤(P2)3种土壤,每种土壤分别设置施用量为0(C0)、10 g·kg-1(C1)和20 g·kg-1(C2)的玉米秸秆生物质炭处理,进行为期60 d的恒温恒湿室内培养试验,对比分析施用生物质炭对不同程度重金属污染水稻土中CO2-C释放动态、总有机碳和活性碳库含量和激发效应的影响。[结果]添加生物质炭能够显著增加不同程度重金属污染水稻土CO2排放,其中未污染和低污染土壤施加生物质炭后其CO2的释放速率及累积矿化量显著高于高污染土壤。相比于污染土壤,施加生物质炭对未污染土壤易氧化态碳含量的增加影响更显著;P1土壤低炭和高炭处理分别比原土微生物量碳含量增加23.1%和27.1%,P2土壤增加49.7%和41.7%;P1土壤低炭和高炭处理颗粒态有机碳含量分别比对照增加66.9%和200.2%,P2土壤增加22.2%和45.8%;施炭处理可显著降低土壤中的可溶性有机碳含量。施用生物质炭对各处理土壤产生负激发效应,且在低污染土壤中表现最为显著;生物质炭抑制土壤本底碳的矿化,促进土壤原有有机碳的稳定性。[结论]施用生物质炭可提高重金属污染水稻土中有机碳的累积量,增加土壤中活性碳库的组分,抑制土壤中原有有机碳的矿化分解,存在显著的负激发效应。
Abstract:
[Objectives] Biochar has great potential in heavy metal-contaminated soil remediation and in soil carbon sequestration. The objective of this study was to investigate the effect of biochar addition on the stability of soil organic carbon in heavy metal-contaminated paddy soil,which can provide a scientific base for the management of heavy metal polluted soil remediation. [Methods] The soils used in this study were collected from the south urban areas of Jiangsu Province. They were polluted by Cd and Pb for a long period of time except the control soil collected near the polluted field. Three levels of contaminated soils were selected with the non-polluted soil as a control(P0),medium level polluted soil(P1)and high level polluted soil(P2). The biochar used in this study was derived from maize straw. For each soil,biochar was applied at rate of 0(C0),10 g·kg-1(C1)and 20 g·kg-1(C2). A 60-day incubation experiment was conducted to measure soil respiration rate(CO2-C emission). The total and active organic carbon content were analyzed by the end of incubation and their δ13C values were quantified to access the priming effect. [Results] Biochar generally promoted the soil respiration rate of the different heavy metal-contaminated soils;and the soil respiration rates following biochar addition in P0 and P1 are significantly greater than that of P2. Biochar had greater impact on the content of oxidized organic carbon in P0 than that in P2. Under P1,biochar increased the content of soil microbial biomass carbon by 23.1% and 27.1% respectively for application rate of C1 and C2,and the content of particular organic carbon increased by 66.9% and 200.2%. Under P2,biochar increased soil microbial biomass carbon content by 49.7% and 41.7%,and the particular organic carbon content increased by 22.2% and 45.8%. Biochar addition decreased the content of dissolved organic carbon significantly. A negative priming effect was observed following biochar addition,especially in P1. This suggested that biochar inhibited the mineralization of soil organic carbon and increased the stability of soil organic carbon. [Conclusions] Biochar addition could increase soil carbon sequestration in heavy metal-contaminated paddy soils by increasing active carbon content and inhibiting soil organic carbon mineralization through a negative priming effect.

参考文献/References:

[1] 袁红朝,李春勇,简燕,等. 稳定同位素分析技术在农田生态系统土壤碳循环中的应用[J]. 同位素,2014,27(3):170-178. Yuan H Z,Li C Y,Jian Y,et al. Stable isotope technique in the soil carbon cycling research of agricultural ecosystems[J]. Journal of Isotopes,2014,27(3):170-178(in Chinese with English abstract).
[2] Lal R. Soil carbon sequestration impacts on global climate change and food security[J]. Science,2004,304(5677):1623-1627.
[3] 潘根兴,赵其国. 我国农田土壤碳库演变研究:全球变化和国家粮食安全[J]. 地球科学进展,2005,20(4):384-393. Pan G X,Zhao Q G. Study on evolution of organic carbon stock in agricultural soils of China:facing the challenge of global change and food security[J]. Advances in Earth Science,2005,20(4):384-393(in Chinese with English abstract).
[4] 于贵瑞,王绍强,陈泮勤,等. 碳同位素技术在土壤碳循环研究中的应用[J]. 地球科学进展,2005,20(5):568-577. Yu G R,Wang S Q,Chen P Q,et al. Isotope tracer approaches in soil organic carbon cycle research[J]. Advances in Earth Science,2005,20(5):568-577(in Chinese with English abstract).
[5] Tan Z X,Wang Y H,Kasiulien[AKe·] A,et al. Cadmium removal potential by rice straw-derived magnetic biochar[J]. Clean Technologies and Environmental Policy,2017,19(3):761-774.
[6] Liu X J,Tian G J,Jiang D,et al. Cadmium(Cd)distribution and contamination in Chinese paddy soils on national scale[J]. Environmental Science and Pollution Research,2016,23(18):17941-17952.
[7] 闫华,欧阳明,张旭辉,等. 不同程度重金属污染对稻田土壤真菌群落结构的影响[J]. 土壤,2018,50(3):513-521. Yan H,Ouyang M,Zhang X H,et al. Effects of different gradients of heavy metal contamination on soil fungi community structure in paddy soils[J]. Soils,2018,50(3):513-521(in Chinese with English abstract).
[8] 张阿凤,潘根兴,李恋卿. 生物黑炭及其增汇减排与改良土壤意义[J]. 农业环境科学学报,2009,28(12):2459-2463. Zhang A F,Pan G X,Li L Q. Biochar and the effect on C stock enhancement,emission reduction of greenhouse gases and soil reclaimation[J]. Journal of Agro-Environment Science,2009,28(12):2459-2463(in Chinese with English abstract).
[9] Anderson C R,Condron L M,Clough T J,et al. Biochar induced soil microbial community change:implications for biogeochemical cycling of carbon,nitrogen and phosphorus[J]. Pedobiologia,2011,54(5/6):309-320.
[10] 鲁如坤. 土壤农业化学分析方法[M]. 北京:中国农业科技出版社,2000. Lu R K. Soil Chemical Analysis Methods[M]. Beijing:China Agricultural Science and Technology Press,2000(in Chinese).
[11] 李小曼,徐梦洁,刘勤,等. 基于内梅罗指数法及其改进方法的小尺度区域土壤重金属污染评价——以苏南地区为例[J]. 江苏农业科学,2017,45(3):241-245. Li X M,Xu M J,Liu Q,et al. Evaluation of soil heavy metal pollution in small scale regions based on nemero index method and its improvement method:a case study of southern Jiangsu[J]. Jiangsu Agricultural Science,2017,45(3):241-245(in Chinese with English abstract).
[12] Vance E D,Brookes P C,Jenkinson D S. An extraction method for measuring soil microbial biomass C[J]. Soil Biology and Biochemistry,1987,19(6):703-707.
[13] Wright A L,Provin T L,Hons F M,et al. Dissolved organic carbon in soil from compost-amended bermudagrass turf[J]. Hort Science,2005,40(3):830-835.
[14] Cambardella C A,Elliott E T. Particulate soil organic-matter changes across a grassland cultivation sequence[J]. Soil Science Society of America Journal,1992,56(3):777-783.
[15] 吴健利,刘梦云,赵国庆,等. 黄土台塬土地利用方式对土壤有机碳矿化及温室气体排放的影响[J]. 农业环境科学学报,2016,35(5):1006-1015. Wu J L,Liu M Y,Zhao G Q,et al. Effects of land-use types on soil organic carbon mineralization and greenhouse gas emissions in Loess tableland[J]. Journal of Agro-Environment Science,2016,35(5):1006-1015(in Chinese with English abstract).
[16] 曹亚澄,孙国庆,韩勇,等. 大气浓度下N2O、CH4和CO2中氮、碳和氧稳定同位素比值的质谱测定[J]. 土壤学报,2008,45(2):249-258. Cao Y C,Sun G Q,Han Y,et al. Determination of nitrogen,carbon and oxygen stable isotope ratios in N2O,CH4 and CO2 at natural abundance levels by mass spectrometer[J]. Acta Pedologica Sinica,2008,45(2):249-258(in Chinese with English abstract).
[17] 刘志伟,朱孟涛,郭文杰,等. 秸秆直接还田与炭化还田下土壤有机碳稳定性和温室气体排放潜力的对比研究[J]. 土壤通报,2017,48(6):1371-1378. Liu Z W,Zhu M T,Guo W J,et al. Comparison of soil organic carbon stability and greenhouse gas emissions potential under straw or straw-derived biochar amendment[J]. Chinese Journal of Soil Science,2017,48(6):1371-1378(in Chinese with English abstract).
[18] 罗煜,赵小蓉,李贵桐,等. 酸性和碱性土壤中芒草生物质炭激发效应的特征与差异[J]. 土壤学报,2014,51(1):90-95. Luo Y,Zhao X R,Li G T,et al. Characteristics of difference in priming effect of miscanthus-derived biochar in acid and alkaline soils[J]. Acta Pedologica Sinica,2014,51(1):90-95(in Chinese with English abstract).
[19] 张秀,尚艺婕,王海波,等. 重金属污染条件下生物质炭对土壤微生物群落结构及多样性影响的研究进展[J]. 中国农学通报,2016,32(25):147-152. Zhang X,Shang Y J,Wang H B,et al. Advances in biochar effects on soil microbial community structure and diversity under heavy metal contamination[J]. Chinese Agricultural Science Bulletin,2016,32(25):147-152(in Chinese with English abstract).
[20] Zhang A F,Liu Y M,Pan G X,et al. Effect of biochar amendment on maize yield and greenhouse gas emissions from a soil organic carbon poor calcareous loamy soil from Central China Plain[J]. Plant and Soil,2012,351(1/2):263-275.
[21] 马孟园,钱欢,贾露露,等. 生物质炭对重金属的修复及机理研究进展[J]. 广州化工,2018,46(16):23-26. Ma M Y,Qian H,Jia L L,et al. Research progress on recovery and mechanism of biomass charcoal on heavy metals[J]. Guangzhou Chemical Industry,2018,46(16):23-26(in Chinese with English abstract).
[22] 裴俊敏,李金全,李兆磊,等. 生物质炭施加对水-旱轮作农田土壤CO2排放及碳库的影响[J]. 亚热带资源与环境学报,2016,11(3):72-80. Pei J M,Li J Q,Li Z L,et al. Effects of biochar on soil CO2 emissions and carbon pool in rice-wheat rotation croplands[J]. Journal of Subtropical Resources and Environment,2016,11(3):72-80(in Chinese with English abstract).
[23] 章明奎,Walelign D Bayou,唐红娟. 生物质炭对土壤有机质活性的影响[J]. 水土保持学报,2012,26(2):127-131,137. Zhang M K,Bayou W D,Tang H J. Effects of biochar’s application on active organic carbon fractions in soil[J]. Journal of Soil and Water Conservation,2012,26(2):127-131,137(in Chinese with English abstract).
[24] 邬建红,潘剑君,葛序娟,等. 不同土地利用方式下土壤有机碳矿化及其温度敏感性[J]. 水土保持学报,2015,29(3):130-135. Wu J H,Pan J J,Ge X J,et al. Variations of soil organic carbon mineralization and temperature sensitivity under different land use types[J]. Journal of Soil and Water Conservation,2015,29(3):130-135(in Chinese with English abstract).
[25] 周涵君,于晓娜,秦燚鹤,等. 施用生物炭对Cd污染土壤生物学特性及土壤呼吸速率的影响[J]. 中国烟草学报,2017,23(6):61-68. Zhou H J,Yu X N,Qin Y H,et al. Effect of biochar application on soil biological characteristics and soil respiration rate in Cd contaminated soil[J]. Acta Tabacaria Sinica,2017,23(6):61-68(in Chinese with English abstract).
[26] 郭碧林,陈效民,景峰,等. 生物质炭添加对重金属污染稻田土壤理化性状及微生物量的影响[J]. 水土保持学报,2018,32(4):279-284,290. Guo B L,Chen X M,Jing F,et al. Effects of biochar addtion on physicochemical properties and microbial biomass of the red paddy soil polluted by heavy metals[J]. Journal of Soil and Water Conservation,2018,32(4):279-284,290(in Chinese with English abstract).
[27] 魏圆云,崔丽娟,张曼胤,等. 土壤有机碳矿化激发效应的微生物机制研究进展[J]. 生态学杂志,2019,38(4):1202-1211. Wei Y Y,Cui L J,Zhang M Y,et al. Research advances in microbial mechanisms underlying priming effect of soil organic carbon mineralization[J]. Journal of Ecology,2019,38(4):1202-1211(in Chinese with English abstract).
[28] 徐学池,苏以荣,王桂红,等. 秸秆还田配施氮肥对喀斯特农田微生物群落及有机碳矿化的影响[J]. 环境科学,2019,40(6):2912-2919. Xu X C,Su Y R,Wang G H,et al. Straw returning plus nitrogen fertilizer affects soil microbial community and organic carbon mineralization in Karst farmland[J]. Environmental Science,2019,40(6):2912-2919(in Chinese with English abstract).
[29] 匡崇婷,江春玉,李忠佩,等. 添加生物质炭对红壤水稻土有机碳矿化和微生物生物量的影响[J]. 土壤,2012,44(4):570-575. Kuang C T,Jiang C Y,Li Z P,et al. Effects of biochar amendments on soil organic carbon mineralization and microbial biomass in red paddy soils[J]. Soils,2012,44(4):570-575(in Chinese with English abstract).

相似文献/References:

[1]周加顺,郑金伟,池忠志,等.施用生物质炭对作物产量和氮、磷、钾养分吸收的影响[J].南京农业大学学报,2016,39(5):791.[doi:10.7685/jnau.201602022]
 ZHOU Jiashun,ZHENG Jinwei,CHI Zhongzhi,et al.Effects of biochar amendment on crop yield and the uptake of nitrogen, phosphorus and potassium[J].Journal of Nanjing Agricultural University,2016,39(3):791.[doi:10.7685/jnau.201602022]
[2]韩继明,潘根兴,刘志伟,等.减氮条件下秸秆炭化与直接还田对旱地作物产量及综合温室效应的影响[J].南京农业大学学报,2016,39(6):986.[doi:10.7685/jnau.201603033]
 HAN Jiming,PAN Genxing,LIU Zhiwei,et al.Contrasting effect of straw return and its biochar on changes in crop yield and integrated global warming effects under different nitrogen levels[J].Journal of Nanjing Agricultural University,2016,39(3):986.[doi:10.7685/jnau.201603033]
[3]崔亚男,张旭辉,刘晓雨,等.不同猪粪施用方式对小白菜生长、产量及品质的影响[J].南京农业大学学报,2017,40(2):281.[doi:10.7685/jnau.201604036]
 CUI Yanan,ZHANG Xuhui,LIU Xiaoyu,et al.Effects of different swine manure treatments on growth, yield and quality of cabbage[J].Journal of Nanjing Agricultural University,2017,40(3):281.[doi:10.7685/jnau.201604036]
[4]殷全玉,许希希,孟晓楠,等.不同炭化温度生物质炭对不同质地植烟土壤铵态氮含量的影响[J].南京农业大学学报,2018,41(5):881.[doi:10.7685/jnau.201803029]
 YIN Quanyu,XU Xixi,MENG Xiaonan,et al.Effects of biomass carbonized with different temperature on ammonium nitrogen content in different tobacco-planting soil texures[J].Journal of Nanjing Agricultural University,2018,41(3):881.[doi:10.7685/jnau.201803029]
[5]刘晓雨,刘成,王贺东,等.添加生物质炭不同组分对不结球白菜产量和品质的影响[J].南京农业大学学报,2018,41(6):1070.[doi:10.7685/jnau.201805049]
 LIU Xiaoyu,LIU Cheng,WANG Hedong,et al.Effects of different biochar components on the yield and quality of non-heading Chinese cabbage(Brassica campestris ssp. chinesis)[J].Journal of Nanjing Agricultural University,2018,41(3):1070.[doi:10.7685/jnau.201805049]
[6]沈煜洋,孟玲.土壤添加生物质炭对稻纵卷叶螟幼虫生长和末龄幼虫食物利用效率的影响[J].南京农业大学学报,2020,43(2):247.[doi:10.7685/jnau.201905052]
 SHEN Yuyang,MENG Ling.Effects of biochar amendment to soils on larval growth and final instar larval food utilization efficiency of Cnaphalocrocis medinalis(Lepidoptera: Pyralidae)[J].Journal of Nanjing Agricultural University,2020,43(3):247.[doi:10.7685/jnau.201905052]
[7]郑聚锋,程琨,潘根兴.生物质炭施用对深层土壤碳库的影响[J].南京农业大学学报,2020,43(4):589.[doi:10.7685/jnau.201907067]
 ZHENG Jufeng,CHENG Kun,PAN Genxing.Impact of biochar application on deep soil organic carbon pool[J].Journal of Nanjing Agricultural University,2020,43(3):589.[doi:10.7685/jnau.201907067]

备注/Memo

备注/Memo:
收稿日期:2019-04-23。
基金项目:国家自然科学基金项目(41471193,41501310);江苏高校品牌专业建设工程资助项目(PPZY2015A061)
作者简介:赵熙君,硕士研究生。
通信作者:张旭辉,副教授,研究方向为土壤环境学,E-mail:xuhuizhang@njau.edu.cn。
更新日期/Last Update: 1900-01-01