[1]姜珊,汤芳,刘云,等.nrdF基因介导禽致病性大肠杆菌DE205B的抗氧化应激[J].南京农业大学学报,2020,43(3):492-497.[doi:10.7685/jnau.201908001]
 JIANG Shan,TANG Fang,LIU Yun,et al.Gene nrdF meditates tolerance to oxidative stress in avian pathogenic Escherichia coli DE205B[J].Journal of Nanjing Agricultural University,2020,43(3):492-497.[doi:10.7685/jnau.201908001]
点击复制

nrdF基因介导禽致病性大肠杆菌DE205B的抗氧化应激()
分享到:

《南京农业大学学报》[ISSN:1000-2030/CN:32-1148/S]

卷:
43卷
期数:
2020年3期
页码:
492-497
栏目:
动物科学
出版日期:
2020-05-10

文章信息/Info

Title:
Gene nrdF meditates tolerance to oxidative stress in avian pathogenic Escherichia coli DE205B
作者:
姜珊 汤芳 刘云 李德志 任建鸾 张中华 巩倩雯 戴建君
教育部动物健康与食品安全国际联合实验室/农业农村部细菌学重点实验室/南京农业大学动物医学院, 江苏 南京 210095
Author(s):
JIANG Shan TANG Fang LIU Yun LI Dezhi REN Jianluan ZHANG Zhonghua GONG Qianwen DAI Jianjun
MOE Joint International Research Laboratory of Animal Health and Food Safety/Key Laboratory of Animal Bacteriology, Ministry of Agriculture and Rural Affairs/College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
关键词:
前噬菌体禽致病性大肠杆菌氧化应激nrdF
Keywords:
prophageavian pathogenic Escherichia colioxidative stressnrdF
分类号:
S855.1+2
DOI:
10.7685/jnau.201908001
摘要:
[目的]本文旨在研究前噬菌体phiv205-3片段对禽致病性大肠杆菌DE205B氧化应激耐受力的影响。[方法]利用Red同源重组技术敲除前噬菌体phiv205-3片段,构建前噬菌体片段缺失株DE205BΔphiv205-3,检测野生株和前噬菌体片段缺失株对氧化应激的耐受力;进一步敲除前噬菌体片段中氧化应激耐受相关基因nrdE、nrdF、nrdH、nrdI,构建前噬菌体基因缺失株DE205BΔnrdE、DE205BΔnrdF、DE205BΔnrdH和DE205BΔnrdI,并通过基因序列分析和荧光定量PCR(qPCR)检测这些缺失菌株和野生菌株的氧化应激耐受力。[结果]与野生株相比,前噬菌体片段缺失株DE205BΔphiv205-3氧化应激耐受力下降33%(P<0.05);qPCR检测结果显示,前噬菌体基因nrdF在氧化应激情况下转录水平显著提高(P<0.05);对构建前噬菌体单基因缺失株检测结果显示:与野生株相比,缺失株DE205BΔnrdF在氧化应激环境下的存活率下降21%(P<0.05),而缺失株DE205BΔnrdE、DE205BΔnrdH和DE205BΔnrdI的存活率无显著变化。[结论]前噬菌体片段编码的nrdF基因有助于增强宿主细菌DE205B氧化应激耐受力。
Abstract:
[Objectives] This study was performed to determine the effect of prophage phiv205-3 on oxidative tolerance of avian pathogenic Escherichia coli(APEC). [Methods] Prophage deletion mutant strain was constructed by lambda red homologous recombination method and the oxidative tolerance of the deletion and the wild type strain was studied. For further analysis,the deletion mutants of prophage genes nrdE,nrdF,nrdH and nrdI were constructed,designated as DE205BΔnrdE,DE205BΔnrdF,DE205BΔnrdH and DE205BΔnrdI. Then the oxidative tolerance of these deletion mutants and the wild strain was investigated by gene sequence analysis and flourescent quantitative PCR(qPCR). [Results] Compared to the wild type strain,the oxidative tolerance of the phage-deficient strain significantly decreased by 33%(P<0.05). The results of qPCR showed that the transcription level of nrdF significantly increased(P<0.05)under oxidative stress in the wild-type strain. So the nrdF deletion mutant was constructed,and the results showed that the survival rate of the deletion strain DE205BΔnrdF was reduced by 21%(P<0.05)compared with that of wild type strain in oxidative stress,while the survival rate of DE205BΔnrdE,DE205BΔnrdH and DE205BΔnrdI did not show obvious change. [Conclusions] The nrdF in prophage phiv205-3 enhanced the resistance to oxidative stresses of avian pathogenic E.coli DE205B.

参考文献/References:

[1] Wang S,Niu C,Shi Z,et al. Effects of ibeA deletion on virulence and biofilm formation of avian pathogenic Escherichia coli[J]. Infection and Immunity,2011,79(1):279-287.
[2] Guabiraba R,Schouler C. Avian colibacillosis:still many black holes[J]. FEMS Microbiology Letters,2015,362(15):fnv118.
[3] Davies K J. The broad spectrum of responses to oxidants in proliferating cells:a new paradigm for oxidative stress[J]. IUBMB Life,1999,48(1):41-47.
[4] Shenton D,Smirnova J B,Selley J N,et al. Global translational responses to oxidative stress impact upon multiple levels of protein synthesis[J]. J Biol Chem,2006,281(39):29011-29021.
[5] Dai X,Zhu M,Warren M,et al. Slowdown of translational elongation in Escherichia coli under hyperosmotic stress[J]. MBio,2018,9(1):e02375-17.
[6] Martin J E,Imlay J A. The alternative aerobic ribonucleotide reductase of Escherichia coli,NrdEF,is a manganese-dependent enzyme that enables cell replication during periods of iron starvation[J]. Mol Microbiol,2011,80(2):319-334.
[7] Monje-Casas F,Jurado J,Prieto-Alamo M J,et al. Expression analysis of the nrdHIEF operon from Escherichia coli. Conditions that trigger the transcript level in vivo[J]. J Biol Chem,2001,276(21):18031-18037.
[8] Brussow H,Hendrix R W. Phage genomics:small is beautiful[J]. Cell,2002,108(1):13-16.
[9] Casjens S. Prophages and bacterial genomics:what have we learned so far?[J]. Mol Microbiol,2003,49(2):277-300.
[10] Feiner R,Argov T,Rabinovich L,et al. A new perspective on lysogeny:prophages as active regulatory switches of bacteria[J]. Nat Rev Microbiol,2015,13(10):641-650.
[11] Tang F,Zhang W,Lu C. Lysogenic Streptococcus suis isolate SS2-4 containing prophage SMP showed increased mortality in zebra fish compared to the wild-type isolate[J]. PLoS One,2013,8(1):e54227.
[12] Tree J J,Roe A J,Flockhart A,et al. Transcriptional regulators of the GAD acid stress island are carried by effector protein-encoding prophages and indirectly control type Ⅲ secretion in enterohemorrhagic Escherichia coli O157:H7[J]. Mol Microbiol,2011,80(5):1349-1365.
[13] Guigas C,Faulhaber K,Duerbeck D,et al. Prophage-mediated modulation of interaction of Streptococcus thermophilus J34 with human intestinal epithelial cells and its competition against human pathogens[J]. Benef Microbes,2016,7(2):289-297.
[14] Li D,Tang F,Xue F,et al. Prophage phiv142-3 enhances the colonization and resistance to environmental stresses of avian pathogenic Escherichia coli[J]. Vet Microbiol,2018,218:70-77.
[15] Datsenko K A,Wanner B L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products[J]. Proc Natl Acad Sci USA,2000,97(12):6640-6645.
[16] Clermont O,Bonacorsi S,Bingen E. Rapid and simple determination of the Escherichia coli phylogenetic group[J]. Applied and Environmental Microbiology,2000,66(10):4555-4558.
[17] Wang S,Bao Y,Meng Q,et al. IbeR facilitates stress-resistance,invasion and pathogenicity of avian pathogenic Escherichia coli[J]. PLoS One,2015,10(3):e0119698.
[18] Mokady D,Gophna U,Ron E Z. Virulence factors of septicemic Escherichia coli strains[J]. Int J Med Microbiol,2005,295(6/7):455-462.
[19] Wang S,Xia Y,Dai J,et al. Novel roles for autotransporter adhesin AatA of avian pathogenic Escherichia coli:colonization during infection and cell aggregation[J]. FEMS Immunol Med Microbiol,2011,63(3):328-338.
[20] Daddaoua A,Corral-Lugo A,Ramos J L,et al. Identification of GntR as regulator of the glucose metabolism in Pseudomonas aeruginosa[J]. Environmental Microbiology,2017,19(9):3721-3733.
[21] Mahmoud R Y,Li W,Eldomany R A,et al. The Shigella ProU system is required for osmotic tolerance and virulence[J]. Virulence,2017,8(4):362-374.
[22] Cotruvo J A,Jr,Stubbe J. NrdI,a flavodoxin involved in maintenance of the diferric-tyrosyl radical cofactor in Escherichia coli class Ib ribonucleotide reductase[J]. Proc Natl Acad Sci USA,2008,105(38):14383-14388.
[23] Monje-Casas F,Jurado J,Prieto-Alamo M J,et al. Expression analysis of the nrdHIEF operon from Escherichia coli. Conditions that trigger the transcript level in vivo[J]. The Journal of Biological Chemistry,2001,276(21):18031-18037.
[24] Wang X,Kim Y,Ma Q,et al. Cryptic prophages help bacteria cope with adverse environments[J]. Nat Commun,2010,12:147.
[25] Pascoe M J,Lueangsakulthai J,Ripley D,et al. Exposure of Escherichia coli to human hepcidin results in differential expression of genes associated with iron homeostasis and oxidative stress[J]. FEMS Microbiol Lett,2018,365(10):fny089.

相似文献/References:

[1]王颢锦,汤芳,诸葛祥凯,等.auf基因对禽致病性大肠杆菌鸭源株的细胞黏附及动物致病性的影响[J].南京农业大学学报,2015,38(4):624.[doi:10.7685/j.issn.1000-2030.2015.04.015]
 WANG Haojin,TANG Fang,ZHUGE Xiangkai,et al.auf gene affects cell adhesion and animal pathogenecity of avian pathogenic Escherichia coli strain isolated from duck[J].Journal of Nanjing Agricultural University,2015,38(3):624.[doi:10.7685/j.issn.1000-2030.2015.04.015]
[2]王曼,祁克宗,涂健,等.禽致病性大肠杆菌PhoP蛋白调控宿主菌DNA检测方法的建立与应用[J].南京农业大学学报,2015,38(4):645.[doi:10.7685/j.issn.1000-2030.2015.04.018]
 WANG Man,QI Kezong,TU Jian,et al.Establishment and application of detection method of avian pathogenic E.coli PhoP protein regulating host bacteria DNA[J].Journal of Nanjing Agricultural University,2015,38(3):645.[doi:10.7685/j.issn.1000-2030.2015.04.018]
[3]王娟芳,戴建君,姜敏,等.禽致病性大肠杆菌O1、O2、O78血清型三重PCR检测方法的建立[J].南京农业大学学报,2020,43(1):108.[doi:10.7685/jnau.201811032]
 WANG Juanfang,DAI Jianjun,JIANG Min,et al.Triplex PCR to identify avian pathogenic Escherichia coli O1,O2 and O78 serotypes[J].Journal of Nanjing Agricultural University,2020,43(3):108.[doi:10.7685/jnau.201811032]

备注/Memo

备注/Memo:
收稿日期:2019-08-01。
基金项目:国家重点研发计划项目(2016YFD0500800);江苏省自然科学基金优秀青年基金项目(BK20180075)
作者简介:姜珊,硕士研究生
通信作者:戴建君,教授,博士,主要从事大肠杆菌致病机制的研究,E-mail:daijianjun@njau.edu.cn。
更新日期/Last Update: 1900-01-01