[1]颜桂花,邢恒涛,刘强,等.可溶性玉米纤维对仔猪盲肠微生物多样性的影响[J].南京农业大学学报,2020,43(3):505-513.[doi:10.7685/jnau.201906060]
 YAN Guihua,XING Hengtao,LIU Qiang,et al.Effects of soluble corn fiber on microbial diversity in cecum of piglets[J].Journal of Nanjing Agricultural University,2020,43(3):505-513.[doi:10.7685/jnau.201906060]
点击复制

可溶性玉米纤维对仔猪盲肠微生物多样性的影响()
分享到:

《南京农业大学学报》[ISSN:1000-2030/CN:32-1148/S]

卷:
43卷
期数:
2020年3期
页码:
505-513
栏目:
动物科学
出版日期:
2020-05-10

文章信息/Info

Title:
Effects of soluble corn fiber on microbial diversity in cecum of piglets
作者:
颜桂花 邢恒涛 刘强 孙文恺 刘洋 庄苏
南京农业大学动物科技学院, 江苏 南京 210095
Author(s):
YAN Guihua XING Hengtao LIU Qiang SUN Wenkai LIU Yang ZHUANG Su
College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
关键词:
可溶性玉米纤维微生物多样性有机酸仔猪
Keywords:
soluble corn fiber(Fibersol-2)microbial diversityorganic acidspiglets
分类号:
S828.5
DOI:
10.7685/jnau.201906060
摘要:
[目的]本试验旨在研究日粮中添加可溶性玉米纤维(Fibersol-2,Fib2)对仔猪盲肠微生物多样性、有机酸及肠道屏障功能的影响。[方法]选用28日龄、初始体质量为(9.65±0.44)kg的杜×长×大三元杂交仔猪448头,随机分为4组,每组8个重复,每个重复14头,分别饲喂4种日粮:基础日粮分别加0(对照组)、1、2和4 g·kg-1 Fib2。预试期7 d,正试期28 d。[结果]在门水平上,日粮中添加Fib2显著降低软壁菌门和放线菌门的相对丰度(P<0.05,线性),提高拟杆菌门而降低厚壁菌门和变形菌门的相对丰度(P<0.05,线性和二次)。在科水平上,Fib2显著提高普雷沃氏菌科、拟杆菌科和紫单胞菌科的相对丰度而降低瘤胃菌科、毛螺菌科、梭菌科、丹毒丝菌科和unclassified Mollicutes RF9的相对丰度(P<0.05,线性),提高Bacteroidales S24-7 group的相对丰度(P<0.05,二次),提高乳杆菌科而降低消化链球菌科的相对丰度(P<0.05,线性和二次)。在属水平上,Fib2显著提高普氏菌属、拟普雷沃氏菌属、拟杆菌属和紫单胞菌属的相对丰度而降低瘤胃球菌属、Lachnospiraceae NK4A136 group、梭菌属和unknown genus的相对丰度(P<0.05,线性),提高unclassified Bacteroidales S24-7 group的相对丰度(P<0.05,二次),提高乳杆菌属和Prevotellaceae UCG的相对丰度,降低Eubacterium coprostanoligenes group、罕见小球菌属和地孢子菌属的相对丰度(P<0.05,线性和二次)。Fib2显著提高乳酸、乙酸、丙酸、戊酸、总挥发性脂肪酸(P<0.05,线性)、异丁酸和异戊酸含量(P<0.05,线性和二次)。在14 d时,Fib2显著降低血清D-乳酸、内毒素含量(P<0.05,线性)和二胺氧化酶活性(P<0.05,线性和二次)。Pearson相关性分析表明:盲肠微生物与有机酸及肠道渗透性之间存在相关关系。[结论]在本试验条件下,日粮中添加Fib2改变仔猪盲肠微生物菌群结构,提高有机酸浓度,降低肠道渗透性,最终改善仔猪肠道健康。
Abstract:
[Objectives] This experiment was conducted to investigate the effects of soluble corn fiber(Fibersol-2,Fib2)on cecum microbial diversity,organic acids and intestinal barrier function in piglets. [Methods] 448 hybrid(Duroc×Landrace×Large white)piglets with an initial body weight of(9.65±0.44)kg at age of 28 d were randomly allotted to 4 groups with 8 replicates of 14 piglets per pen. The piglets in the four groups were fed a basal diet supplemented with 0(control group),1,2 and 4 g·kg-1 Fib2,respectively. Pre-test was 7 d and the test was 28 d. [Results] Dietary Fib2 supplementation significantly decreased the relative abundances of Tenericutes and Actinobacteria(P<0.05,linear),increased the relative abundance of Bacteroidetes and decreased the relative abundances of Firmicutes and Proteobacteria(P<0.05,linear and quadratic)at the phylum level. At the family level,Fib2 significantly enhanced the relative abundances of Prevotellaceae,Bacteroidaceae and Porphyromonadaceae and reduced the relative abundances of Ruminococcaceae,Lachnospiraceae,Clostridiaceae 1,Erysipelotrichaceae and unclassified Mollicutes RF9(P<0.05,linear),enhanced the relative abundance of Bacteroidales S24-7 group(P<0.05,quadratic),enhanced the relative abundance of Lactobacillaceae and reduced the relative abundance of Peptostreptococcaceae(P<0.05,linear and quadratic). At the genus level,Fib2 significantly increased the relative abundances of Prevotella,Alloprevotella,Bacteroides and Parabacteroides and decreased the relative abundances of Ruminococcus 1,Lachnospiraceae NK4A136 group,Clostridium sensu stricto 1 and unknown genus(P<0.05,linear),increased the abundance of unclassified Bacteroidales S24-7 group(P<0.05,quadratic),increased the relative abundances of Lactobacillus and Prevotellaceae UCG and decreased the relative abundances of Eubacterium coprostanoligenes group,Subdoligranulum and Terrisporobacter(P<0.05,linear and quadratic). Fib2 significantly increased the contents of lactate,acetate,propionate,valerate,total volatile fatty acids(P<0.05,linear),isobutyrate and isovalerate(P<0.05,linear and quadratic). On day 14,Fib2 significantly reduced serum D-lactate and endotoxin contents(P<0.05,linear),and diamine oxidase activity(P<0.05,linear and quadratic). Pearson correlation analysis showed that there was a correlation between cecum microbiota and organic acids or intestinal permeability. [Conclusions] Under the conditions of this experiment,dietary Fib2 supplementation altered the structure of cecum microbiota,increased the contents of organic acids,and reduced the permeability of intestine,ultimately ameliorating the intestinal health of piglets.

参考文献/References:

[1] Ohkuma K,Wakabayashi S. Fibersol-2:a soluble,non-digestible,starch-derived dietary fibre[M]//McCleary B V,Prosky L. Advanced Dietary Fibre Technology. Oxford:Blackwell Science Ltd.,2008:509-523.
[2] Miyazato S,Kishimoto Y,Takahashi K,et al. Continuous intake of resistant maltodextrin enhanced intestinal immune response through changes in the intestinal environment in mice[J]. Bioscience of Microbiota,Food and Health,2016,35(1):1-7.
[3] 罗玉衡,陈洪,余冰,等. 短期或长期饲喂高水平豌豆纤维对猪盲肠微生物群落结构和代谢产物的影响[J]. 畜牧兽医学报,2017,48(8):1459-1467. Luo Y H,Chen H,Yu B,et al. Short-term or long-term intake of high-level pea fiber specifically affects the bacterial community and metabolites in the cecum of pigs[J]. Acta Veterinaria et Zootechnica Sinica,2017,48(8):1459-1467(in Chinese with English abstract).
[4] 王保哲,王雨雨,范程瑞,等. 低聚木糖对育肥猪生长性能、血清生化、免疫指标和粪便微生物菌群的影响[J]. 畜牧与兽医,2018,50(5):36-42. Wang B Z,Wang Y Y,Fan C R,et al. Effects of xylo-oligosaccharide on growth performance,serum biochemical,immune indexes and fecal bacterial community in fattening pigs[J]. Animal Husbandry and Veterinary Medicine,2018,50(5):36-42(in Chinese with English abstract).
[5] 杭苏琴,毛胜勇,于卓腾,等. 体外法评定甘露寡糖和甜菜汁对肠道微生物发酵的影响[J]. 南京农业大学学报,2007,30(1):79-83. DOI:10.7685/j.issn.1000-2030.2007.01.016. Hang S Q,Mao S Y,Yu Z T,et al. Effect of mannan-oligosaccharide and sugar beet pulp on intestinal microbial fermentation in vitro[J]. Journal of Nanjing Agricultural University,2007,30(1):79-83(in Chinese with English abstract).
[6] 肖定福,唐志如,印遇龙,等. 壳聚糖对仔猪肠黏膜通透性及Occludin和ZO-1表达的影响[J]. 畜牧兽医学报,2012,43(6):894-900. Xiao D F,Tang Z R,Yin Y L,et al. Effects of chitosan on intestine permeability,Occludin and ZO-1 expression in piglets[J]. Acta Veterinaria et Zootechnica Sinica,2012,43(6):894-900(in Chinese with English abstract).
[7] 王伟兰. 不同日粮纤维对猪肠道微生物多样性及挥发性脂肪酸的影响[D]. 南京:南京农业大学,2014. Wang W L. Influence of different diet fiber on swine gastrointestinal tract microbial diversity and volatile fatty acid[D]. Nanjing:Nanjing Agricultural University,2014(in Chinese with English abstract).
[8] Schloss P D,Gevers D,Westcott S L. Reducing the effects of PCR amplification and sequencing artifacts on 16s rRNA-based studies[J]. PLoS One,2011,6(12):e27310.
[9] Wang Q,Garrity G M,Tiedje J M,et al. Naive bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy[J]. Applied and Environmental Microbiology,2007,73(16):5261-5267.
[10] Quast C,Pruesse E,Yilmaz P,et al. The SILVA ribosomal RNA gene database project:improved data processing and web-based tools[J]. Nucleic Acids Research,2013,41:D590-D596.
[11] Jiang X T,Peng X,Deng G H,et al. Illumina sequencing of 16S rRNA tag revealed spatial variations of bacterial communities in a mangrove wetland[J]. Microbial Ecology,2013,66(1):96-104.
[12] Rivas M N,Burton O T,Wise P,et al. A microbiota signature associated with experimental food allergy promotes allergic sensitization and anaphylaxis[J]. Journal of Allergy and Clinical Immunology,2013,131(1):201-212.
[13] Zhuang S,Zhang T,Chang G J,et al. The metabolism of volatile fatty acids by portal-drained viscera and liver of goats fed diets with different forage to concentrate ratio[J]. Pakistan Journal of Zoology,2014,46(2):391-400.
[14] 张瑞阳,王东升,朱伟云,等. 奶牛静脉血内毒素浓度及其与产奶量的相关性[J]. 动物营养学报,2012,24(5):822-827. Zhang R Y,Wang D S,Zhu W Y,et al. Endotoxin concentration in venous blood and its correlation with milk yield of dairy cows[J]. Chinese Journal of Animal Nutrition,2012,24(5):822-827(in Chinese with English abstract).
[15] Leser T D,Amenuvor J Z,Jensen T K,et al. Culture-independent analysis of gut bacteria:the pig gastrointestinal tract microbiota revisited[J]. Applied and Environmental Microbiology,2002,68(2):673-690.
[16] Lamendella R,Domingo J W S,Ghosh S,et al. Comparative fecal metagenomics unveils unique functional capacity of the swine gut[J]. BMC Microbiology,2011,11(1):103-119.
[17] Flint H J,Bayer E A,Rincon M T,et al. Polysaccharide utilization by gut bacteria:potential for new insights from genomic analysis[J]. Nature Reviews Microbiology,2008,6(2):121-131.
[18] White B A,Lamed R,Bayer E A,et al. Biomass utilization by gut microbiomes[J]. Annual Review of Microbiology,2014,68(1):279-296.
[19] Rizzatti G,Lopetuso L R,Gibiino G,et al. Proteobacteria:a common factor in human diseases[J]. Biomed Research International,2017,2017:1-7.
[20] Pieper R,Bindelle J,Rossnagel B,et al. Effect of carbohydrate composition in barley and oat cultivars on microbial ecophysiology and proliferation of salmonella enterica in an in vitro model of the porcine gastrointestinal tract[J]. Applied and Environmental Microbiology,2009,75(22):7006-7016.
[21] Zhang Y J,Liu Q,Zhang W M,et al. Gastrointestinal microbial diversity and short-chain fatty acid production in pigs fed different fibrous diets with or without cell wall-degrading enzyme supplementation[J]. Livestock Science,2018,207:105-116.
[22] Freier T A,Beitz D C,Li L,et al. Characterization of Eubacterium coprostanoligenes sp. nov. a cholesterol-reducing anaerobe[J]. International Journal of Systematic Bacteriology,1994,44(1):137-142.
[23] Ivarsson E,Roos S,Liu H Y,et al. Fermentable non-starch polysaccharides increases the abundance of Bacteroides-Prevotella-Porphyromonas in ileal microbial community of growing pigs[J]. Animal,2014,8(11):1777-1787.
[24] Zhang L,Wu W D,Lee Y K,et al. Spatial heterogeneity and co-occurrence of mucosal and luminal microbiome across swine intestinal tract[J]. Frontiers in Microbiology,2018,9:1-14.
[25] Brooke C J,Riley T V. Erysipelothrix rhusiopathiae:bacteriology,epidemiology and clinical manifestations of an occupational pathogen[J]. Journal of Medical Microbiology,1999,48(9):789-799.
[26] Filippo C D,Cavalieri D,Paola M D,et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa[J]. Proc Natl Acad Sci USA,2010,107(33):14691-14696.
[27] Pajarillo E A B,Chae J P,Balolong M P,et al. Characterization of the fecal microbial communities of duroc pigs using 16S rRNA gene pyrosequencing[J]. Asian-Australasian Journal of Animal Sciences,2015,28(4):584-591.
[28] Sakamoto M,Tanaka Y,Benno Y,et al. Parabacteroides faecis sp. nov. isolated from human faeces[J]. International Journal of Systematic and Evolutionary Microbiology,2015,65:1342-1346.
[29] Salyers A A. Bacteroides of the human lower intestinal tract[J]. Annual Review of Microbiology,1984,38(1):293-313.
[30] He B,Nohara K,Ajami N J,et al. Transmissible microbial and metabolomic remodeling by soluble dietary fiber improves metabolic homeostasis[J]. Scientific Reports,2015,5:10604-10614.
[31] 杭苏琴,时祺,丁立人,等. 果寡糖对断奶前仔猪胃肠道组织形态、消化酶、有机酸及乳酸杆菌菌群的影响[J]. 草业学报,2014,23(2):260-267. Hang S Q,Shi Q,Ding L R,et al. Effects of fructo-oligosaccharides on mucosal morphology,digestive enzyme activity,organic acid and Lactobacillus of the gastrointestinal tract of unweaned piglets[J]. Acta Prataculturae Sinica,2014,23(2):260-267(in Chinese with English abstract).
[32] Furusawa Y,Obata Y,Fukuda S,et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells[J]. Nature,2013,504:446-450.
[33] Donohoe D R,Garge N,Zhang X X,et al. The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon[J]. Cell Metabolism,2011,13(5):517-526.
[34] Vital M,Howe A C,Tiedje J M. Revealing the bacterial butyrate synthesis pathways by analyzing(meta)genomic data[J]. mBio,2014,5(2):e00889.
[35] Luk G D,Bayless T M,Baylin S B. Plasma postheparin diamine oxidase.sensitive provocative test for quantitating length of acute intestinal mucosal injury in the rat[J]. Journal of Clinical Investigation,1983,71(5):1308-1315.
[36] Johnston S D,Smye M,Watson R P. Intestinal permeability tests in coeliac disease[J]. Clinical Laboratory,2001,47:143-150.
[37] Ammori B J,Fitzgerald P,Hawkey P,et al. The early increase in intestinal permeability and systemic endotoxin exposure in patients with severe acute pancreatitis is not associated with systemic bacterial translocation:molecular investigation of microbial DNA in the blood[J]. Pancreas,2003,26(1):18-22.

相似文献/References:

[1]吕成龙,田雨,陈芳慧,等.采用16S rRNA高通量测序技术分析鲜奶中微生物的多样性[J].南京农业大学学报,2020,43(2):333.[doi:10.7685/jnau.201902003]
 Lü Chenglong,TIAN Yu,CHEN Fanghui,et al.Microbial diversity analysis of bovine fresh milk by high-throughput sequencing of metagenomic 16S rRNA[J].Journal of Nanjing Agricultural University,2020,43(3):333.[doi:10.7685/jnau.201902003]

备注/Memo

备注/Memo:
收稿日期:2019-06-28。
基金项目:国际合作基金项目(HY0029)
作者简介:颜桂花,硕士研究生。
通信作者:庄苏,教授,博导,主要从事动物营养与饲料科学研究,E-mail:zhuangsu@njau.edu.cn。
更新日期/Last Update: 1900-01-01