[1]王彬,刘俊泽,陈志杰,等.甘蔗提取物对敌草快诱导断奶仔猪氧化损伤的防护效果及肠道微生物参与的机制[J].南京农业大学学报,2020,43(3):514-522.[doi:10.7685/jnau.201906025]
 WANG Bin,LIU Junze,CHEN Zhijie,et al.Protective effects of sugar cane extract against oxidative damage induced by diquat and mechanism mediated by intestinal microbiota in weaned piglets[J].Journal of Nanjing Agricultural University,2020,43(3):514-522.[doi:10.7685/jnau.201906025]
点击复制

甘蔗提取物对敌草快诱导断奶仔猪氧化损伤的防护效果及肠道微生物参与的机制()
分享到:

《南京农业大学学报》[ISSN:1000-2030/CN:32-1148/S]

卷:
43卷
期数:
2020年3期
页码:
514-522
栏目:
动物科学
出版日期:
2020-05-10

文章信息/Info

Title:
Protective effects of sugar cane extract against oxidative damage induced by diquat and mechanism mediated by intestinal microbiota in weaned piglets
作者:
王彬12 刘俊泽1 陈志杰2 黄凯1 李延森1 李春梅1
1. 南京农业大学动物科技学院, 江苏 南京 210095;
2. 江苏食品药品职业技术学院, 江苏 淮安 223005
Author(s):
WANG Bin12 LIU Junze1 CHEN Zhijie2 HUANG Kai1 LI Yansen1 LI Chunmei1
1. College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China;
2. Jiangsu Food&Pharmaceutical Science College, Huai’an 223005, China
关键词:
甘蔗提取物氧化损伤敌草快肠道微生物断奶仔猪
Keywords:
sugar cane extractoxidative damagediquatintestinal microbiotaweaned piglets
分类号:
S828
DOI:
10.7685/jnau.201906025
摘要:
[目的]本试验旨在探究甘蔗提取物(SCE)对敌草快诱导断奶仔猪氧化损伤的防护效果及其肠道微生物的参与机制。[方法]选择28头断奶仔猪,随机分为4组:对照(Cont)组、敌草快(Diqu)组、1%(质量分数)甘蔗提取物添加(SCE1)组和2%甘蔗提取物添加(SCE2)组。后3组在第21天早晨空腹腹腔注射10 mg·kg-1敌草快溶液,对照组注射等剂量的生理盐水,于第24天屠宰,取血样测定氧化应激指标(谷胱甘肽过氧化物酶、总抗氧化能力、丙二醛、二胺氧化酶和超氧化物岐化酶)和免疫球蛋白,取结肠食靡样品测定并分析细菌群落。[结果]注射敌草快后72 h内,Diqu组和SCE1组仔猪体质量呈现负增长,添加2% SCE显著提高断奶仔猪平均日增重和平均日采食量(P<0.05),显著改善饲料转化效率(P<0.05)。同时提高血液免疫球蛋白IgM水平和谷胱甘肽过氧化酶活性。在肠道微生物方面,4个组间的结肠微生物β多样性具有显著差异。在门水平上,SCE2组结肠中的螺旋菌门、广古菌门和疣微菌门的相对丰度显著低于Diqu组(P<0.05)。在属和OTU的水平上,添加2% SCE显著增加潜在有益菌LactobacillusRuminococcus gauvreauii group的相对丰度,降低潜在有害菌Clostridium sensu stricto 1、KlebsiellaSharpea的相对丰度。[结论]日粮添加2% SCE可在氧化应激条件下保护仔猪肠道微生物物种多样性,缓解敌草快造成的氧化损伤。
Abstract:
[Objectives] The objectives of the study were to evaluate the effects of sugar cane extract(SCE)on alleviating gut oxidative stress induced by diquat and underline the mechanisms mediated by intestinal microbiota in weaned piglets. [Methods] Twenty-eight weaned piglets were randomly divided into four groups;the control group(Cont),diquat group(Diqu),1% SCE supplementation group(SCE1)and 2% SCE supplementation group(SCE2). On 21 d,piglets in the last three groups were intraperitoneally injected with 10 mg·kg-1 of Diqu solution,and piglets in the Cont group were intraperitoneally injected with physical saline. All piglets were killed on 24 d. The blood samples were taken to measure the glutathione peroxidase(GSH-PX),total antioxidant capacity(T-AOC),malondialdehyde(MDA),diamine oxidase(DAO)and superoxide dismutase(SOD),together with IgA,IgG and IgM. The colonic digesta were taken for microbial diversity analysis. [Results] During the 72 hours after diquat injection,the piglet’s body weight was negatively growing in Diqu and SCE1 groups,while the average daily gain and average daily feed intake increased in SCE2 group(P<0.05),and also feed conversion efficiency in piglets improved(P<0.05). Meanwhile,SCE supplementation increased the concentration of IgM and GSH-PX in the blood(P<0.05). Concurrently,a significant discrepancy in colonic microbiota existed among four groups. At the phylum level,when compared to the Diqu group,2% SCE supplementation decreased the relative abundance of Spirochaetae,Euryarchaeota and Verrucomicrobia(P<0.05). At the genus level,increases in relative abundances of Lactobacillus and Ruminococcus gauvreauii group,but the decreases in relative abundances of Clostridium sensu stricto 1,Klebsiella and Sharpea were observed in the SCE supplementation group. [Conclusions] Dietary supplementation with 2% SCE might alleviate the gut oxidative stress induced by Diqu,through promoting colonization of beneficial bacteria,and inhibiting colonization of harmful pathogens in the colon of weaned piglets.

参考文献/References:

[1] Yin J,Ren W K,Liu G,et al. Birth oxidative stress and the development of an antioxidant system in newborn piglets[J]. Free Radical Research,2013,47(12):1027-1035.
[2] Yin J,Wu M M,Xiao H,et al. Development of an antioxidant system after early weaning in piglets[J]. Journal of Animal Science,2014,92(2):612-619.
[3] Yin J,Ren W K,Wu XS,et al. Oxidative stress-mediated signaling pathways:a review[J]. Journal of Food Agriculture & Environment,2013,11(2):132-139.
[4] Gao P F,Ma C,Sun Z,et al. Feed-additive probiotics accelerate yet antibiotics delay intestinal microbiota maturation in broiler chicken[J]. Microbiome,2017,5:91.
[5] Huang P,Zhang Y,Xiao K P,et al. The chicken gut metagenome and the modulatory effects of plant-derived benzylisoquinoline alkaloids[J]. Microbiome,2018,6:211.
[6] 王彬,李延森,李春梅,等. 甘蔗提取物的活性成分与生理功能研究进展[J]. 畜牧与兽医,2018,50(1):137-139. Wang B,Li Y S,Li C M,et al. Research advance on active comositions and physiological functions of sugar cane extracts[J]. Animal Husbandary & Veterinary Medicine,2018,50(1):137-139(in Chinese with English abstract).
[7] Wang B,Li Y S,Mizu M,et al. Protective effect of sugar cane extract against dextran sulfate sodium-induced colonic inflammation in mice[J]. Tissue Cell,2017,49(1):8-14.
[8] McMurdie P J,Holmes S. Phyloseq:an R package for reproducible interactive analysis and graphics of microbiome census data[J]. PLoS One,2013,8(4):e61217.
[9] Love M I,Huber W,Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2[J]. Genome Biology,2014,15(12):550.
[10] Yin J,Liu M F,Ren W K,et al. Effects of dietary supplementation with glutamate and aspartate on diquat-induced oxidative stress in piglets[J]. PLoS One,2015,10(4):e0122893.
[11] Yin F G,Jiang W M,Guan S,et al. Glutamine and animal immune function[J]. Journal of Food Agriculture & Environment,2010,8(3/4):135-141.
[12] Parker A,Lawson M A E,Vaux L,et al. Host-microbe interaction in the gastrointestinal tract[J]. Environmental Microbiology,2018,20(7):2337-2353.
[13] Gilbert J A,Blaser M J,Caporaso J G,et al. Current understanding of the human microbiome[J]. Nature Medicine,2018,24(4):392-400.
[14] Baarlen P V,Wells J M,Kleerebezem M. Regulation of intestinal homeostasis and immunity with probiotic lactobacilli[J]. Trends in Immunology,2013,34(5):208-215.
[15] Miquel S,Martin R,Rossi O,et al. Faecalibacterium prausnitzii and human intestinal health[J]. Current Opinion in Microbiology,2013,16(3):255-261.
[16] Lopetuso L R,Scaldaferri F,Petito V,et al. Commensal Clostridia:leading players in the maintenance of gut homeostasis[J]. Gut Pathogens,2013,5(1):23.
[17] Munk P,Knudsen B E,Lukjacenko O,et al. Abundance and diversity of the faecal resistome in slaughter pigs and broilers in nine European countries[J]. Nature Microbiology,2018,3(8),898-908.
[18] Pal C,Bengtsson-Palme J,Kristiansson E,et al. The structure and diversity of human,animal and environmental resistomes[J]. Microbiome,2016,4:54.
[19] Hu Y F,Yang X,Qin J J,et al. Metagenome-wide analysis of antibiotic resistance genes in a large cohort of human gut microbiota[J]. Nature Communications,2013,4:2151.
[20] Lew L C,Hor Y Y,Yusoff N A A,et al. Probiotic Lactobacillus plantarum P8 alleviated stress and anxiety while enhancing memory and cognition in stressed adults:a randomised,double-blind,placebo-controlled study[J]. Clinical Nutrition,2018,24:1-12.
[21] Corrigan A,de Leeuw M,Penaud-Frezet S,et al. Phylogenetic and functional alterations in bacterial community compositions in broiler ceca as a result of mannan oligosaccharide supplementation[J]. Applied Environmental Microbiology,2015,81(10):3460-3470.
[22] Ren W K,Wang K,Yin J,et al. Glutamine-lnduced secretion of intestinal secretory immunoglobulin A:a mechanistic perspective[J]. Frontiers in Immunology,2016,7:503.
[23] Grander C,Adolph T E,Wieser V,et al. Recovery of ethanol-induced Akkermansia muciniphila depletion ameliorates alcoholic liver disease[J]. Gut Microbiota,2017. DOI:10.1136/gutjn1-2016-313432.
[24] Song Y,Malmuthuge N,Li FY,et al. Colostrum feeding shapes the hindgut microbiota of dairy calves during the first 12 h of life[J]. FEMS Microbiology Ecology,2019,95:fiy203.
[25] Simon J C,Marchesi J R,Mougel C,et al. Host-microbiota interactions:from holobiont theory to analysis[J]. Microbiome,2019,7:5.
[26] Crost E H,Tailford L E,le Gall G,et al. Utilisation of mucin glycans by the human gut symbiont Ruminococcus gnavus is strain-dependent[J]. PLoS One,2013,8(10):e76341.
[27] Zhu J,Liao M,Yao Z T,et al. Breast cancer in postmenopausal women is associated with an altered gut metagenome[J]. Microbiome,2018,6:136.

相似文献/References:

[1]丁逍,刘琳,陈迪,等.过氧化氢诱导原代大鼠睾丸间质细胞氧化损伤模型的建立[J].南京农业大学学报,2014,37(2):99.[doi:10.7685/j.issn.1000-2030.2014.02.016]
 DING Xiao,LIU Lin,CHEN Di,et al.Establishment of an oxidative damage model induced by H2O2 in primary rat Leydig cells[J].Journal of Nanjing Agricultural University,2014,37(3):99.[doi:10.7685/j.issn.1000-2030.2014.02.016]

备注/Memo

备注/Memo:
收稿日期:2019-06-17。
基金项目:江苏省高校自然科学基金项目(18KJD230002)
作者简介:王彬,博士研究生。
通信作者:李春梅,博士,教授,研究方向为动物环境生理与营养学,E-mail:chunmeili@njau.edu.cn。
更新日期/Last Update: 1900-01-01