[1]冯芳,蔡豪亮,刘文豪,等.姜黄素与大豆蛋白的结合性及相互作用机制研究[J].南京农业大学学报,2020,43(3):537-546.[doi:10.7685/jnau.201906034]
 FENG Fang,CAI Haoliang,LIU Wenhao,et al.Study on the complexation and interaction mechanism of curcumin with soybean proteins[J].Journal of Nanjing Agricultural University,2020,43(3):537-546.[doi:10.7685/jnau.201906034]
点击复制

姜黄素与大豆蛋白的结合性及相互作用机制研究()
分享到:

《南京农业大学学报》[ISSN:1000-2030/CN:32-1148/S]

卷:
43卷
期数:
2020年3期
页码:
537-546
栏目:
食品与工程
出版日期:
2020-05-10

文章信息/Info

Title:
Study on the complexation and interaction mechanism of curcumin with soybean proteins
作者:
冯芳1 蔡豪亮1 刘文豪2 陈志刚1
1. 南京农业大学食品科学技术学院, 江苏 南京 210095;
2. 河南向上食品有限公司, 河南 鹤壁 456250
Author(s):
FENG Fang1 CAI Haoliang1 LIU Wenhao2 CHEN Zhigang1
1. College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China;
2. Henan Xiangshang Food Co. Ltd., Hebi 456250, China
关键词:
姜黄素天然低共熔溶剂(NADES)大豆7S蛋白大豆11S蛋白结合机制
Keywords:
curcuminnatural deep eutectic solvents(NADES)soybean 7S proteinsoybean 11S proteincombination mechanism
分类号:
TS201.2
DOI:
10.7685/jnau.201906034
摘要:
[目的]本文旨在通过姜黄素与大豆7S、11S蛋白质结合后,溶于天然低共熔溶剂(NADES)以改善姜黄素水溶性低、稳定性差的缺陷,并揭示姜黄素与蛋白质的相互作用机制。[方法]将姜黄素与实验室自提大豆7S、11S蛋白结合,确定姜黄素与蛋白质结合的最优条件;将结合物溶于制备的6种NADES中,考察结合后姜黄素的光、热稳定性;通过傅里叶变换红外光谱分析结合后姜黄素对蛋白质的结构影响并采用荧光光谱法分析二者之间的相互作用机制。[结果]与大豆7S、11S蛋白结合后的姜黄素在NADES中的光、热稳定性均有所提高。姜黄素与大豆7S、11S蛋白的结合强度均较弱,且姜黄素与大豆7S、11S蛋白间为静态猝灭,生成了摩尔比约为1∶2的不发光的复合物,同时,姜黄素与蛋白质的结合引起蛋白质部分二级结构的展开与折叠。[结论]姜黄素与大豆7S、11S蛋白的相互作用可以改善姜黄素水溶性低、稳定性差的缺陷,且制备的蛋白质材料可能被用作新型药物载体。
Abstract:
[Objectives] The study aimed to improve the solubility and stability of curcumin by combining curcumin with soybean 7S and 11S proteins then dissolving the complexation in natural deep eutectic solvents(NADES). And the interaction mechanism was explored between curcumin and proteins. [Methods] By combining curcumin with 7S and 11S proteins which were extracted from the laboratory,the optimal conditions for the binding of curcumin to protein were determined. The complexation was dissolved in the prepared six NADES,and the photostability and thermal stability of curcumin after binding were investigated. Fourier-transform infrared spectroscopy(FT-IR)was used to analyze the structural effects of combined curcumin on proteins and fluorescence spectroscopy was used to analyze the interaction mechanism between them by fluorescence spectroscopy. [Results] The photostability and thermal stability of combined curcumin in NADES were improved. The binding strength of curcumin with soybean 7S,11S proteins was weak. And curcumin with soybean 7S,11S proteins was static quenching. Curcumin and protein formed a non-luminescent compound with molar ratio of nearly 1∶2. Meanwhile,curcumin caused the unfolding and folding of the secondary structure of the protein. [Conclusions] In this study,the association with soybean 7S or 11S proteins could improve the bound curcumin with the solubility and stability. The protein materials prepared in this study might be potentially used as novel medicine carriers.

参考文献/References:

[1] Barik A,Priyadarsini K I,Mohan H R. Photophysical studies on binding of curcumin to bovine serum albumin[J]. Photochemistry and Photo-biology,2007,77(6):597-603.
[2] Pröhl M,Schubert U S,Weigand W,et al. Metal complexes of curcumin and curcumin derivatives for molecular imaging and anticancer therapy[J]. Coordination Chemistry Reviews,2016,307:32-41.
[3] Bengmark S,刘青. 植物源保护剂姜黄素的研究进展[J]. 现代药物与临床,2009,24(1):22-31. Bengmark S,Liu Q. Research progress on curcumin,a plant-derived protective agent[J]. Modern Pharmacy and Clinic,2009,24(1):22-31(in Chinese).
[4] Tønnesen H H. Solubility and stability of curcumin in solutions containing alginate and other viscosity modifying macromolecules. Studies of curcumin and curcuminoids[J]. Pharmazie,2006,61(8):696-700.
[5] González C G,Mustafa N R,Wilson E G,et al. Application of natural deep eutectic solvents for the"green"extraction of vanillin from Vanilla pods[J]. Flavour and Fragrance Journal,2018,33(1):91-96.
[6] Dai Y T,Verpoorte R,Choi Y H. Natural deep eutectic solvents providing enhanced stability of natural colorants from safflower(Carthamus tinctorius)[J]. Food Chemistry,2014,159:116-121.
[7] Kaya-Celiker H,Mallikarjunan K. Better nutrients and therapeutics delivery in food through nanotechnology[J]. Food Engineering Reviews,2012,4(2):114-123.
[8] Yallapu M M,Jaggi M,Chauhan S C. Curcumin nanoformulations:a future nanomedicine for cancer[J]. Drug Discovery Today,2012,17(1/2):71-80.
[9] Yang M,Wu Y,Li J,et al. Binding of curcumin with bovine serum albumin in the presence of ?-carrageenan and implications on the stability and antioxidant activity of curcumin[J]. Journal of Agricultural and Food Chemistry,2013,61(29):7150-7155.
[10] Rosenberg M,Rosenberg Y,Frenkel L. Microencapsulation of model oil in wall matrices consisting of SPI and maltodextrins[J]. AIMS Agriculture and Food,2016,1(1):33-51.
[11] Keerati-u-rai M,Corredig M. Heat-induced changes in oil-in-water emulsions stabilized with soy protein isolate[J]. Food Hydrocolloids,2009,23(8):2141-2148.
[12] Ruíz-Henestrosa V P,Sánchez C C,Escobar M D M Y,et al. Interfacial and foaming characteristics of soy globulins as a function of pH and ionic strength[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2007,309(1/2/3):202-215.
[13] Tarone A G,Fasolin L H,Perrechil F D A,et al. Influence of drying conditions on the gelling properties of the 7S and 11S soy protein fractions[J]. Food and Bioproducts Processing,2013,91(2):111-120.
[14] Staswick P E,Hermodson M A,Nielsen N C. Identification of the cystines which link the acidic and basic components of the glycinin subunits[J]. The Journal of Biological Chemistry,1984,259(21):13431-13435.
[15] Chen F,Li B,Tang C. Nanocomplexation between curcumin and soy protein isolate:influence on curcumin stability/bioaccessibility and in vitro protein digestibility[J]. Journal of Agricultural and Food Chemistry,2015,63(13):3559-3569.
[16] Huang Y,Feng F,Chen Z G,et al. Green and efficient removal of cadmium from rice flour using natural deep eutectic solvents[J]. Food Chemistry,2018,244:260-265.
[17] Liu C,Wang H L,Cui Z M,et al. Optimization of extraction and isolation for 11S and 7S globulins of soybean seed storage protein[J]. Food Chemistry,2007,102:1310-1316.
[18] Bourassa P,Kanakis C D,Tarantilis P,et al. Resveratrol,genistein,and curcumin bind bovine serum albumin[J]. The Journal of Physical Chemistry B,2010,114(9):3348-3354.
[19] Cheng Z,Liu R,Jiang X,et al. The interaction between cepharanthine and two serum albumins:multiple spectroscopic and chemometric investigations[J]. Luminescence,2014,29(5):504-515.
[20] Gao D,Tian Y,Bi S,et al. Studies on the interaction of colloidal gold and serum albumins by spectral methods[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2005,62(4/5):1203-1208.
[21] Zhao X C,Liu R T,Teng Y,et al. The interaction between Ag+ and bovine serum albumin:the interaction between Ag+ and bovine serum albumin:a spectroscopic investigation[J]. Science of the Total Environment,2011,409(5):892-897.
[22] 刘勤勤,朱科学,郭晓娜,等. 茶多酚与大豆分离蛋白的相互作用[J]. 食品科学,2015,36(17):43-47. Liu Q Q,Zhu K X,Guo X N,et al. Spectroscopic analysis of interaction between tea polyphenol and soy protein isolate[J]. Food Science,2015,36(17):43-47(in Chinese with English abstract).
[23] 刘春雷,孙立斌,李相昕,等. 大豆7S和11S蛋白二级结构与表面疏水性相关性的研究[J]. 食品科学,2015,36(17):28-32. Liu C L,Sun L B,Li X X,et al. Correlation of secondary structures of 7S and 11S soybean proteins and their surface hydrophobicity[J]. Food Science,2015,36(17):28-32(in Chinese with English abstract).
[24] 许铭珠. 葡萄皮花青素提取物与蛋白质的相互作用及其对色素稳定性的影响[D]. 无锡:江南大学,2015. Xu M Z. Interaction of protein with grape skin anthocyanins extracts(GSAE)and its effect on the stability of GSAE[D]. Wuxi:Jiangnan University,2015(in Chinese with English abstract).
[25] 唐课文,周丹. 从姜黄中提取姜黄素的研究[J]. 天然产物研究与开发,2004,16(3):231-234. Tang K W,Zhou D. Study on extraction of curcumin from turmeric[J]. Natural Product Research and Development,2004,16(3):231-234(in Chinese).
[26] 綦菁华,蔡同一,庞美霞,等. 影响蛋白质-酚类聚合物形成的因素研究[J]. 中国食品学报,2009,9(6):78-82. Qi J H,Cai T Y,Pang M X,et al. Studies on the influencing factors for formative polymer of protein with phenols[J]. Journal of Chinese Institute of Food Science and Technology,2009,9(6):78-82(in Chinese with English abstract).
[27] 郑君花. 姜黄色素的提取、稳定化及其应用研究[D]. 贵阳:贵州大学,2015. Zheng J H. The extraction,stabilization and application of curcumin[D]. Guiyang:Guizhou University,2015(in Chinese with English abstract).
[28] 陈国珍. 荧光分析法[M]. 2版. 北京:科学出版社,1990:201-217. Chen G Z. Fluorescence Analysis[M]. 2nd ed. Beijing:Science Press,1990:201-217(in Chinese).

相似文献/References:

[1]魏思宇,甘振丁,韦文耀,等.姜黄素和白藜芦醇联用对断奶仔猪消化酶活性和胰腺抗氧化功能的影响[J].南京农业大学学报,2020,43(4):754.[doi:10.7685/jnau.201906068]
 WEI Siyu,GAN Zhending,WEI Wenyao,et al.Effects of curcumin and resveratrol on digestive enzyme activity and pancreatic antioxidant function in weaned piglets[J].Journal of Nanjing Agricultural University,2020,43(3):754.[doi:10.7685/jnau.201906068]

备注/Memo

备注/Memo:
收稿日期:2019-06-19。
基金项目:江苏省现代农业产业技术体系(JFRS-04-0501);鹤壁市重大创新专项(2069999);山东省重点研发计划项目(2019YYSP008)
作者简介:冯芳,硕士研究生。
通信作者:陈志刚,教授,博导,研究方向为食品生物技术,E-mail:zgchen@njau.edu.cn。
更新日期/Last Update: 1900-01-01