[1]张恒,陈怡名,张旭,等.白粉菌诱导簇毛麦叶片酵母双杂交文库构建及CMPG1-V候选互作蛋白筛选[J].南京农业大学学报,2020,43(4):594-604.[doi:10.7685/jnau.202001036]
 ZHANG Heng,CHEN Yiming,ZHANG Xu,et al.Construction of yeast two-hybrid cDNA library of Haynaldia villosa leaves induced by Blumeria graminis f.sp. tritici and candidate interaction protein screening for CMPG1-V[J].Journal of Nanjing Agricultural University,2020,43(4):594-604.[doi:10.7685/jnau.202001036]
点击复制

白粉菌诱导簇毛麦叶片酵母双杂交文库构建及CMPG1-V候选互作蛋白筛选()
分享到:

《南京农业大学学报》[ISSN:1000-2030/CN:32-1148/S]

卷:
43卷
期数:
2020年4期
页码:
594-604
栏目:
植物科学
出版日期:
2020-07-13

文章信息/Info

Title:
Construction of yeast two-hybrid cDNA library of Haynaldia villosa leaves induced by Blumeria graminis f.sp. tritici and candidate interaction protein screening for CMPG1-V
作者:
张恒 陈怡名 张旭 牛影 赵佳 吴承云 郝永利 孙丽 王海燕 肖进 王秀娥
南京农业大学细胞遗传研究所/作物遗传与种质创新国家重点实验室/江苏省现代作物生产协同创新中心, 江苏 南京 210095
Author(s):
ZHANG Heng CHEN Yiming ZHANG Xu NIU Ying ZHAO Jia WU Chengyun HAO Yongli SUN Li WANG Haiyan XIAO Jin WANG Xiu’e
Cytogenetics Institute/State Key Laboratory of Crop Genetics and Germplasm Enhancement/Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
关键词:
小麦白粉病簇毛麦酵母双杂交CMPG1-V基因互作蛋白
Keywords:
wheat powdery mildewHaynaldia villosayeast-two-hybridCMPG1-V geneinteraction protein
分类号:
Q943.2;S512.1
DOI:
10.7685/jnau.202001036
摘要:
[目的] 本文旨在使用Mate&PlateTM技术构建簇毛麦受白粉菌诱导的酵母双杂交文库,鉴定正向调节小麦白粉病抗性的簇毛麦E3泛素连接酶蛋白CMPG1-V的互作蛋白,为解析其抗病性机制奠定基础。[方法] 提取白粉菌诱导前及诱导后1、2、4、6、12、24和48 h的簇毛麦叶片总RNA,利用SMART技术分离纯化mRNA,合成ds cDNA,将ds cDNA和pGADT7-Rec载体共同转入酵母菌株Y187,构建簇毛麦酵母双杂交文库,明确文库插入片段大小和滴度。以CMPG1-V为诱饵筛选文库,并对部分互作蛋白进行了回补验证,利用BiFC方法验证CMPG1-V与筛选到的1个互作蛋白CMIN6(MYB25-V)的体内互作。[结果] 成功构建了受白粉菌诱导的簇毛麦叶片酵母双杂交文库,文库滴度为9.5×107 CFU·mL-1,插入片段长度为250~2 000 bp,重组率为100%。以CMPG1-V为诱饵筛选文库,获得79个互作蛋白,挑选其中10个互作蛋白进行回补验证。通过BiFC试验验证了CMPG1-V与MYB25-V的体内互作。MYB25-V及其在小麦中的同源基因TaMYB25受白粉菌诱导后均上调表达,推测MYB25-V可能参与调控小麦白粉病抗性。[结论] 本研究成功构建了白粉菌诱导的簇毛麦酵母双杂交文库,为鉴定CMPG1-V的互作蛋白并解析其抗病性机制奠定了基础。
Abstract:
[Objectives] This study aimed to construct the yeast-two-hybrid(Y2H) library of Haynaldia villosa induced by Blumeria graminis f.sp. tritici using Mate&PlateTM technique. The library will provide important platform for identifying the interaction proteins and elucidating the resistance mechanism regulated by E3 ubiquitin ligase protein CMPG1-V that positively regulates wheat powdery mildew resistance in H.villosa.[Methods] Total RNA of H.villosa leaves at 0,1,2,4,6,12,24 and 48 h after inducing with Blumeria graminearum f.sp. tritici(Bgt) was extracted,mRNA was isolated and purified by SMART technique and used for ds cDNA synthesizing. The ds cDNA together with the vector pGADT7-Rec was transformed into the yeast strain Y187. The two-hybrid library was constructed,and the inserted sizes of the cDNA fragments and library titer were evaluated. Y2H library screening was performed using CMPG1-V as a bait,and representative candidate interaction proteins were verified. BiFC further confirmed in vivo interaction between CMPG1-V and a candidate protein CMIN6(MYB25-V).[Results] A Y2H library of H.villosa leaves induced by Bgt was constructed. The library titer was 9.5×107 CFU·mL-1,the size of insert fragments was 250-2 000 bp,and the recombination rate was 100%. Y2H library screening using CMPG1-V as a bait identified 79 candidate interaction proteins. Ten of them were randomly selected for validating their interaction with CMPG1-V by Y2H. In vivo interaction between MYB25-V and CMPG1-V was confirmed by BiFC. Expression analysis showed that MYB25-V and its wheat homologue TaMYB25 were up-regulated in response to Bgt inoculation,indicating the potential involvement of MYB25-V in regulating powdery mildew resistance.[Conclusions] A yeast two-hybrid library of H.villosa leaves induced by Bgt was constructed. This library provides useful platform for identifying CMPG1-V interaction proteins and elucidating the powdery mildew resistance mechanism,especially mediated by CMPG1-V.

参考文献/References:

[1] Zou S H,Wang H,Li Y W,et al. The NB-LRR gene Pm60 confers powdery mildew resistance in wheat[J]. New Phytologist,2018,218(1):298-309.
[2] 杨美娟,黄坤艳,韩庆典. 小麦白粉病及其抗性研究进展[J]. 分子植物育种,2016,14(5):1244-1254. Yang M J,Huang K Y,Han Q D. Research progresses on wheat powdery mildew and its resistance[J]. Molecular Plant Breeding,2016,14(5):1244-1254(in Chinese with English abstract).
[3] 王卫红. 不同杀菌剂对小麦白粉病的防效试验[J]. 现代农业科技,2010(1):165-168. Wang W H. Experiments of different fungicides against wheat powdery mildew[J]. Modern Agricultural Science and Technology,2010(1):165-168(in Chinese).
[4] 董美林. 农药污染及环境保护措施研究[J]. 山西农经,2018(21):117. Dong M L. Research on pesticide pollution and environmental protection measures[J]. Shanxi Agricultural Economy,2018(21):117(in Chinese).
[5] Sears E R. Addition of the genome of Haynaldia villosa to Triticum aestivum[J]. American Journal of Botany,1953,32(2):168-174.
[6] Sun H,Song J,Lei J,et al. Construction and application of oligo-based FISH karyotype of Haynaldia villosa[J]. Journal of Genetics and Genomics,2018,45(8):463-466.
[7] Chen P D,Qi L L,Zhou B,et al. Development and molecular cytogenetic analysis of wheat-Haynaldia villosa 6VS/6AL translocation lines specifying resistance to powdery mildew[J]. Theoretical and Applied Genetics,1995,91(6/7):1125-1128.
[8] He H G,Zhu S Y,Zhao R H,et al. Pm21,encoding a typical CC-NBS-LRR protein,confers broad-spectrum resistance to wheat powdery mildew disease[J]. Molecular Plant,2018,11(6):879-882.
[9] Xing L P,Hu P,Liu J Q,et al. Pm21 from Haynaldia villosa encodes a CC-NBS-LRR protein conferring powdery mildew resistance in wheat[J]. Molecular Plant,2018,11(6):874-878.
[10] Cao A Z,Xing L P,Wang X Y,et al. Serine/threonine kinase gene Stpk-V,a key member of powdery mildew resistance gene Pm21,confers powdery mildew resistance in wheat[J]. Proc Natl Acad Sci USA,2011,108(19):7727-7732.
[11] Wang Z K,Cheng J Y,Fan A Q,et al. LecRK-V,an L-type lectin receptor kinase in Haynaldia villosa,plays positive role in resistance to wheat powdery mildew[J]. Plant Biotechnology Journal,2018,16(1):50-62.
[12] Faheem M,Li Y B,Arshad M,et al. A disulphide isomerase gene(PDI-V)from Haynaldia villosa contributes to powdery mildew resistance in common wheat[J]. Scientific Reports,2016,6:24227.
[13] Zhu Y F,Li Y B,Fei F,et al. E3 ubiquitin ligase gene CMPG1-V from Haynaldia villosa L. contributes to powdery mildew resistance in common wheat(Triticum aestivum L.)[J]. Plant Journal,2015,84(1):154-168.
[14] Das P P,Macharia M W,Lin Q S,et al. In planta proximity-dependent biotin identification(BioID)identifies a TMV replication co-chaperone NbSGT1 in the vicinity of 126 kDa replicase[J]. Journal of Proteomics,2019,204:103402.
[15] Fields S,Song O K. A novel genetic system to detect protein:protein interactions[J]. Nature,1989,340(6230):245-246.
[16] 谢新太,葛皓,彭志良,等. 空心菜水培营养液配方筛选[J]. 贵州农业科学,2014,42(7):68-72. Xie X T,Ge H,Peng Z L,et al. Screening of nutritive formulations for morning glory under hydroponics[J]. Guizhou Agricultural Sciences,2014,42(7):68-72(in Chinese with English abstract).
[17] Zhao J,Zhang X,Wan W T,et al. Identification and characterization of the EXO70 gene family in polyploid wheat and related species[J]. International Journal of Molecular Sciences,2018,20(1):60.
[18] Zheng L P,Yao J N,Gao F L,et al. The subcellular localization and functional analysis of Fibrillarin2,a nucleolar protein in Nicotiana benthamiana[J]. BioMed Research International,2016,2016:1-9.
[19] Borrill P,Ramirez-Gonzalez R,Uauy C. ExpVIP:a customizable RNA-seq data analysis and visualization platform[J]. Plant Physiology,2016,170(4):2172-2186.
[20] 王婷,葛怀娜,郭宏. 酵母双杂交技术应用进展[J]. 生物技术进展,2015,5(5):392-396. Wang T,Ge H N,Guo H. Progress on application of yeast two-hybrid technique[J]. Current Biotechnology,2015,5(5):392-396(in Chinese with English abstract).
[21] 卫晓静,王华忠,岳洁瑜. 白粉菌诱导小麦叶片全长cDNA文库的构建及质量评价[J]. 江苏农业科学,2015,43(2):38-40. Wei X J,Wang H Z,Yue J Y. Construction and quality evaluation of a full-length cDNA library of wheat leaf induced by powdery mildew[J]. Journal of Jiangsu Agricultural Sciences,2015,43(2):38-40(in Chinese with English abstract).
[22] 黄衍焱,杨玲珑,王莹,等. 白粉菌侵染后的拟南芥酵母双杂交cDNA文库构建及其利用[J]. 植物病理学报,2015,45(4):370-375. Huang Y Y,Yang L L,Wang Y,et al. Construction and utilization of a yeast two-hybrid cDNA library from Arabidopsis thaliana infected by powdery mildew[J]. Acta Phytopathologica Sinica,2015,45(4):370-375(in Chinese with English abstract).
[23] 朱佳慧,徐秋芳,袁平平,等. 水稻幼苗酵母双杂交cDNA文库的构建及鉴定[J]. 江苏农业科学,2018,46(9):47-50. Zhu J H,Xu Q F,Yuan P P,et al. Construction and identification of yeast two-hybrid cDNA library of rice seedlings[J]. Journal of Jiangsu Agricultural Sciences,2018,46(9):47-50(in Chinese with English abstract).
[24] 郑凯,曲延英,倪志勇,等. 海岛棉纤维均一化酵母双杂交文库的构建与GbTCP5互作蛋白的筛选[J]. 核农学报,2019,33(10):1928-1939. Zheng K,Qu Y Y,Ni Z Y,et al. Construction of yeast two-hybrid normalized cDNA library and screening of interaction proteins of GbTCP5 in Gossypium barbadense fiber[J]. Journal of Nuclear Agricultural Sciences,2019,33(10):1928-1939(in Chinese with English abstract).
[25] 王玉姣,陈姗姗,孙柏华,等. 辣椒疫霉菌诱导辣椒酵母双杂交cDNA文库的构建及鉴定[J]. 山东农业大学学报(自然科学版),2018,49(3):379-382. Wang Y J,Chen S S,Sun B H,et al. Construction and characterization of yeast two-hybrid cDNA library derived from Capsicum annuum inoculated with Phytophthora capsici[J]. Journal of Shandong Agricultural University(Natural Science Edition),2018,49(3):379-382(in Chinese with English abstract).
[26] 雷海英,白凤麟,段永红,等. 玉米酵母双杂交cDNA文库的构建及ZmCEN互作蛋白的筛选[J]. 西北植物学报,2018,38(4):598-606. Lei H Y,Bai F L,Duan Y H,et al. Construction of yeast two-hybrid cDNA library and screening of interaction proteins of ZmCEN in maize[J]. Acta Botanica Boreali-Occidentalia Sinica,2018,38(4):598-606(in Chinese with English abstract).
[27] 沈文涛,周鹏. 接种PRSV番木瓜种苗胞质酵母双杂交cDNA文库的构建与分析[J]. 热带作物学报,2008,29(4):419-423. Shen W T,Zhou P. Construction and primary analysis of yeast cytoplasmic two-hybrid cDNA library of Carica papaya seedlings inoculated with Papaya ringspot virus[J]. Chinese Journal of Tropical Crops,2008,29(4):419-423(in Chinese with English abstract).
[28] Xie Q,Guo H S,Dallman G,et al. SINAT5 promotes ubiquitin-related degradation of NAC1 to attenuate auxin signals[J]. Nature,2002,419(6903):167-170.
[29] 方玉楷,许丽艳,麦瑞琴,等. 酵母双杂交技术的影响因素及其实验策略[J]. 中国实验诊断学,2005,9(1):70-74. Fang Y K,Xu L Y,Mai R Q,et al. Factors effecting on yeast two-hybrid experiments and their responding strategies[J]. Chinese Journal of Laboratory Diagnosis,2005,9(1):70-74(in Chinese with English abstract).
[30] Yahiaoui N,Srichumpa P,Dudler R,et al. Genome analysis at different ploidy levels allows cloning of the powdery mildew resistance gene Pm3b from hexaploid wheat[J]. The Plant Journal,2004,37(4):528-538.
[31] Hurni S,Brunner S,Stirnweis D,et al. The powdery mildew resistance gene Pm8 derived from rye is suppressed by its wheat ortholog Pm3[J]. The Plant Journal,2014,79(6):904-913.
[32] Sánchez-Martín J,Steuernagel B,Ghosh S,et al. Rapid gene isolation in barley and wheat by mutant chromosome sequencing[J]. Genome Biology,2016,17(1):221.
[33] Krattinger S G,Lagudah E S,Spielmeyer W,et al. A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat[J]. Science,2009,323(5919):1360-1363.
[34] Moore J W,Herrera-Foessel S,Lan C X,et al. A recently evolved hexose transporter variant confers resistance to multiple pathogens in wheat[J]. Nature Genetics,2015,47(12):1494-1498.
[35] Lu P,Guo L,Wang Z Z,et al. A rare gain of function mutation in a wheat tandem kinase confers resistance to powdery mildew[J]. Nature Communications,2020,11:680.
[36] 段双科,许育彬,吴兴元. 小麦白粉病菌致病毒性和抗病基因及抗病育种研究进展[J]. 麦类作物学报,2002,22(2):83-86. Duan S K,Xu Y B,Wu X Y. Research progress of pathogene virulence,resistance genes and resistance breeding of wheat powdery mildew[J]. Journal of Tritical Crops,2002,22(2):83-86(in Chinese with English abstract).
[37] 戴树元,李魏,任佐华,等. 植物U-box蛋白在植物先天免疫反应中的作用及其研究进展[J]. 中国农学通报,2016,32(14):56-61. Dai S Y,Li W,Ren Z H,et al. Function of plant U-box protein in plant innate immunity and its research progress[J]. Chinese Agricultural Science Bulletin,2016,32(14):56-61(in Chinese with English abstract).
[38] Li W,Ahn I P,Ning Y,et al. The U-Box/ARM E3 ligase PUB13 regulates cell death,defense,and flowering time in Arabidopsis[J]. Plant Physiology,2012,159(1):239-250.
[39] Stegmann M,Anderson R G,Ichimura K,et al. The ubiquitin ligase PUB22 targets a subunit of the exocyst complex required for PAMP-triggered responses in Arabidopsis[J]. The Plant Cell,2012,24(11):4703-4716.
[40] Liu J,Park C H,He F,et al. The RhoGAP SPIN6 associates with SPL11 and OsRac1 and negatively regulates programmed cell death and innate immunity in rice[J]. PLoS Pathogens,2015,11(2):e1004629.
[41] Yang C W,González-Lamothe R,Ewan R A,et al. The E3 ubiquitin ligase activity of Arabidopsis plant U-BOX17 and its functional tobacco homolog ACRE276 are required for cell death and defense[J]. The Plant Cell,2006,18(4):1084-1098.
[42] Ishikawa K,Yamaguchi K,Sakamoto K,et al. Bacterial effector modulation of host E3 ligase activity suppresses PAMP-triggered immunity in rice[J]. Nature Communications,2014,5:5430.
[43] González-Lamothe R,Tsitsigiannis D I,Ludwig A A,et al. The U-box protein CMPG1 is required for efficient activation of defense mechanisms triggered by multiple resistance genes in tobacco and tomato[J]. The Plant Cell,2006,18(4):1067-1083.
[44] Wang W L,Wang W Q,Wu Y Z,et al. The involvement of wheat U-box E3 ubiquitin ligase TaPUB1 in salt stress tolerance[J]. Journal of Integrative Plant Biology,2020,62(5):631-651.
[45] Zheng H Y,Dong L L,Han X Y,et al. The TuMYB46L-TuACO3 module regulates ethylene biosynthesis in einkorn wheat defense to powdery mildew[J]. New Phytologist,2020,225(6):2526-2541.
[46] Chezem W R,Memon A,Li F S,et al. SG2-type R2R3-MYB transcription factor MYB15 controls defense-induced lignification and basal immunity in Arabidopsis[J]. The Plant Cell,2017,29(8):1907-1926.
[47] Al-Attala M N,Wang X J,Abou-Attia M A,et al. A novel TaMYB4 transcription factor involved in the defence response against Puccinia striiformis f. sp. tritici and abiotic stresses[J]. Plant Molecular Biology,2014,84(4/5):589-603.
[48] Wei X,Shan T,Hong Y,et al. TaPIMP2,a pathogen-induced MYB protein in wheat,contributes to host resistance to common root rot caused by Bipolaris sorokiniana[J]. Scientific Reports,2017,7(1):1754.
[49] Li W T,Zhu Z W,Chern M,et al. A natural allele of a transcription factor in rice confers broad-spectrum blast resistance[J]. Cell,2017,170(1):114-126.
[50] Marino D,Froidure S,Canonne J,et al. Arabidopsis ubiquitin ligase MIEL1 mediates degradation of the transcription factor MYB30 weakening plant defence[J]. Nature Communications,2013,4:1476.

相似文献/References:

[1]刘萍,杨宝军,陈佩度.普通小麦2簇毛麦6VS/ 6AL 易位系抗病性在不同小麦遗传背景中的传递[J].南京农业大学学报,2004,27(2):1.[doi:10.7685/j.issn.1000-2030.2004.02.001]
 LIU Ping,YANG Bao-jun,CHEN Pei-du.Transfer of disease resistance of Triticum aestivum-Haynaldia villosa 6VS/6AL translocation lines in different wheat background[J].Journal of Nanjing Agricultural University,2004,27(4):1.[doi:10.7685/j.issn.1000-2030.2004.02.001]
[2]吴沛良,刘大钧.硬粒小麦-簇毛麦双二倍体与普通小麦杂种F_1的细胞遗传学研究[J].南京农业大学学报,1987,10(3):15.[doi:10.7685/j.issn.1000-2030.1987.03.003]
 Wu Peiliang,Liu Dajun.CYTOGENETIC STUDIES OF F_1 HYBRID BETWEEN TRITICUM AESTIVUM AND TRITICUM DURUM-HAYNALDIA VILLOSA AMPHIPLOID[J].Journal of Nanjing Agricultural University,1987,10(4):15.[doi:10.7685/j.issn.1000-2030.1987.03.003]

备注/Memo

备注/Memo:
收稿日期:2020-01-17。
基金项目:国家自然科学基金项目(91935304,31971943);国际(地区)合作与交流项目(31661143005);农业部948项目(2015-Z41);江苏省科技厅项目[PZCZ201706,JATS(2019)429];江苏省科技成果转化专项基金(BA2017138);宁夏回族自治区重点研发计划重大项目(2019BBF02022-04)
作者简介:张恒,博士研究生。
通信作者:王秀娥,教授,研究方向为小麦遗传育种,E-mail:xiuew@njau.edu.cn。
更新日期/Last Update: 1900-01-01