[1]刘正洋,王若斐,乔策策,等.木霉生物有机肥对白菜和甘蓝产量及土壤微生物区系的影响[J].南京农业大学学报,2020,43(4):650-657.[doi:10.7685/jnau.201908023]
 LIU Zhengyang,WANG Ruofei,QIAO Cece,et al.Effects of Trichoderma bio-organic fertilizer application on yield and soil microflora in Chinese cabbage and cabbage rotation system[J].Journal of Nanjing Agricultural University,2020,43(4):650-657.[doi:10.7685/jnau.201908023]
点击复制

木霉生物有机肥对白菜和甘蓝产量及土壤微生物区系的影响()
分享到:

《南京农业大学学报》[ISSN:1000-2030/CN:32-1148/S]

卷:
43卷
期数:
2020年4期
页码:
650-657
栏目:
生物与环境
出版日期:
2020-07-13

文章信息/Info

Title:
Effects of Trichoderma bio-organic fertilizer application on yield and soil microflora in Chinese cabbage and cabbage rotation system
作者:
刘正洋 王若斐 乔策策 张楠 沈宗专 李荣 沈其荣
南京农业大学江苏省固体有机废弃物资源化高技术研究重点实验室/江苏省有机固体废弃物协同创新中心/教育部资源节约型肥料工程技术研究中心, 江苏 南京 210095
Author(s):
LIU Zhengyang WANG Ruofei QIAO Cece ZHANG Nan SHEN Zongzhuan LI Rong SHEN Qirong
Jiangsu Provincial Key Lab of Solid Organic Waste Utilization/Jiangsu Collaborative Innovation Center of Solid Organic Wastes/Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, China
关键词:
木霉生物有机肥土壤微生物区系产量白菜-甘蓝轮作体系
Keywords:
Trichodermabio-organic fertilizersoil microflorayieldChinese cabbage and cabbage rotation system
分类号:
S144.9
DOI:
10.7685/jnau.201908023
摘要:
[目的] 本文旨在通过比较有机肥(OF)和木霉生物有机肥处理(BIO)对不同季白菜-甘蓝轮作产量及土壤微生物区系的影响,解析生物有机肥提高白菜和甘蓝产量的土壤微生物生态学机制,为白菜-甘蓝轮作高产栽培提供理论支撑。[方法] 连续2季在白菜-甘蓝轮作体系下分别施用有机肥和生物有机肥,比较不同肥料处理对产量的影响,并采用高通量测序技术研究不同季土壤微生物区系的变化。[结果] 与OF处理相比,BIO处理显著增加白菜和甘蓝的产量,第1季和第2季增幅分别为4.25%和8.85%。此外,BIO处理显著增加土壤电导率(EC值)、速效钾与速效磷含量。除第2季的细菌群落丰富度指数外,BIO处理土壤微生物群落的丰富度和多样性指数均大于OF处理;主坐标分析结果显示OF和BIO处理间土壤微生物群落结构差异明显,且方差分解分析结果显示功能微生物贵州木霉NJAU4742(Trichoderma guizhouense NJAU4742)对土壤微生物群落,尤其是真菌群落结构影响显著;BIO处理的伯克氏菌属(Burkholderia)、Bhargavaea属、木霉属(Trichoderma)和红酵母属(Rhodotorula)的相对丰度显著高于OF处理,且其相对丰度与产量呈显著正相关。[结论] 连续施用生物有机肥增加白菜和甘蓝的产量,改变土壤微生物群落结构和组成,添加的功能菌和激发的关键微生物与产量增加相关。连续施用生物有机肥能调节土壤微生物群落结构和组成,并提高白菜-甘蓝轮作体系产量。
Abstract:
[Objectives] The effects of organic fertilizer(OF) and bio-organic fertilizer(BIO) on yield and microflora in Chinese cabbage and cabbage rotation system were compared to reveal the soil micro-ecological mechanisms of yield enhancement,and to further provide an important theoretical basis for high-yield cultivation of cabbages.[Methods] A 2-season field experiment was performed to investigate the impacts of continuous application of OF and BIO on Chinese cabbage and cabbage yields,and the high-throughput sequencing was employed to analyze the variation of soil microflora in different seasons.[Results] Two seasons continuous applications of BIO effectively increased the crop yields by 4.25% and 8.85% respectively,as compared to the treatment applied with OF. In addition,application of BIO significantly increased the EC value,available potassium and available phosphorus contents. Except for the richness index of bacterial community in the second season,the richness and diversity indexes of microbial community in BIO were higher than those in OF. Principal coordinates analysis results showed that microflora structures were significantly separated by different fertilization regimes. Variation partition analysis results showed that the functional microorganisms(Trichoderma guizhouense NJAU4742) had a significant impact on the variation of microflora structure,especially for fungal community. The relative abundances of Burkholderia,Bhargavaea,Trichoderma and Rhodotorula in BIO were significantly higher than those in OF,and showed positive correlations with crop yields. The results of redundancy analysis were the same with principal coordinates analysis. The relative abundances of Burkholderia,Bhargavaea,Trichoderma and Rhodotorula had positive correlations with the cabbage yield.[Conclusions] Consecutive BIO application increased crop yields in Chinese cabbage and cabbage rotation system,and altered soil microbial community structure and composition. The yield enhancement was attributed to the amendment of BIO which enhanced relative abundance of Trichoderma and increased the abundance of native beneficial microbial groups including Burkholderia,Bhargavaea,and Rhodotorula genera. Consecutive BIO application can manipulate the soil microbial community structure and composition,and increase crop yields in Chinese cabbage and cabbage rotation system.

参考文献/References:

[1] Zhao S,Liu D Y,Ling N,et al. Bio-organic fertilizer application significantly reduces the Fusarium oxysporum population and alters the composition of fungi communities of watermelon Fusarium wilt rhizosphere soil[J]. Biology and Fertility of Soils,2014,50(5):765-774.
[2] 郝文英. 中国农业百科全书:土壤卷[M]. 北京:中国农业出版社,1996:385-400. Hao W Y. An Encyclopedia of Chinese Agriculture:Soil Volumes[M]. Beijing:China Agriculture Press,1996:385-400(in Chinese).
[3] 邹莉,袁晓颖,李玲,等. 连作对大豆根部土壤微生物的影响研究[J]. 微生物学杂志,2005,25(2):27-30. Zou L,Yuan X Y,Li L,et al. Effects continuous cropping on soil microbes on soybean roots[J]. Journal of Microbiology,2005,25(2):27-30(in Chinese with English abstract).
[4] Bakker M G,Chaparro J M,Manter D K,et al. Impacts of bulk soil microbial community structure on rhizosphere microbiomes of Zea mays[J]. Plant and Soil,2015,392(1/2):115-126.
[5] Ge G F,Li Z J,Fan F L,et al. Soil biological activity and their seasonal variations in response to long-term application of organic and inorganic fertilizers[J]. Plant and Soil,2010,326(1/2):31-44.
[6] Mikha M M,Rice C W. Tillage and manure effects on soil and aggregate-associated carbon and nitrogen[J]. Soil Science Society of America Journal,2004,68(3):809-816.
[7] 沈宗专. 抑制香蕉土传枯萎病土壤的微生物区系特征及调控[D]. 南京:南京农业大学,2015. Shen Z Z. Characterization and management of microbial community in banana suppressive soils to soil-borne Fusarium wilt disease[D]. Nanjing:Nanjing Agricultural University,2015(in Chinese with English abstract).
[8] Malik K A,Bilal R,Mehnaz S,et al. Association of nitrogen-fixing,plant-growth-promoting rhizobacteria(PGPR)with kallar grass and rice[M]//Opportunities for Biological Nitrogen Fixation in Rice and Other Non-Legumes. Dordrecht:Springer Netherlands,1997:37-44.
[9] Shafi Q H,Mirza M S,Malik K A. Production of phytohormones by the nitrogen fixation bacteria isloated from sugarcan[J]. Biohorizons,1999,2(1/2/3/4):61-76.
[10] Martínez-Medina A,Alguacil M,Pascual J A,et al. Phytohormone profiles induced by Trichoderma isolates correspond with their biocontrol and plant growth-promoting activity on melon plants[J]. Journal of Chemical Ecology,2014,40(7):804-815.
[11] Zhang S W,Gan Y T,Xu B L. Mechanisms of the IAA and ACC-deaminase producing strain of Trichoderma longibrachiatum T6 in enhancing wheat seedling tolerance to NaCl stress[J]. BMC Plant Biology,2019,19:22.
[12] He A L,Liu J,Wang X H,et al. Soil application of Trichoderma asperellum GDFS1009 granules promotes growth and resistance to Fusarium graminearum in maize[J]. Journal of Integrative Agriculture,2019,18(3):599-606.
[13] Zhang F G,Xu X X,Huo Y Q,et al. Trichoderma-inoculation and mowing synergistically altered soil available nutrients,rhizosphere chemical compounds and soil microbial community,potentially driving alfalfa growth[J]. Front Microbiol,2018,9:3241.
[14] 黄炎. 鸡粪生物有机肥的研制及其促生防病效果与机制研究[D]. 南京:南京农业大学,2016. Huang Y. Developing of chicken manure based bio-organic fertilizer and its effects and mechanisms on plant growth promotion and soil-borne bacterial wilt disease suppression[D]. Nanjing:Nanjing Agricultural University,2016(in Chinese with English abstract).
[15] 鲍士旦. 土壤农化分析[M]. 北京:中国农业出版社,2000. Bao S D. Agricultural and Chemical Analysis of Soil[M]. Beijing:China Agriculture Press,2000(in Chinese).
[16] Li R,Shen Z Z,Sun L,et al. Novel soil fumigation method for suppressing cucumber Fusarium wilt disease associated with soil microflora alterations[J]. Applied Soil Ecology,2016,101:28-36.
[17] Zhang J,Bayram A G,Atanasova L,et al. The neutral metallopeptidase NMP1 of Trichoderma guizhouense is required for mycotrophy and self-defence[J]. Environmental Microbiology,2016,18(2):580-597.
[18] Cai F,Yu G H,Wang P,et al. Harzianolide,a novel plant growth regulator and systemic resistance elicitor from Trichoderma harzianum[J]. Plant Physiology and Biochemistry,2013,73:106-113.
[19] Cai F,Pang G,Li R X,et al. Bioorganic fertilizer maintains a more stable soil microbiome than chemical fertilizer for monocropping[J]. Biology and Fertility of Soils,2017,53(8):861-872.
[20] Yedidia I,Srivastva A K,Kapulnik Y,et al. Effect of Trichoderma harzianum on microelement concentrations and increased growth of cucumber plants[J]. Plant and Soil,2001,235(2):235-242.
[21] Cai F,Chen W,Wei Z,et al. Colonization of Trichoderma harzianum strain SQR-T037 on tomato roots and its relationship to plant growth,nutrient availability and soil microflora[J]. Plant and Soil,2015,388(1/2):337-350.
[22] Vo?í?ková J,Baldrian P. Fungal community on decomposing leaf litter undergoes rapid successional changes[J]. The ISME Journal,2013,7(3):477-486.
[23] Qiu M H,Zhang R F,Xue C,et al. Application of bio-organic fertilizer can control Fusarium wilt of cucumber plants by regulating microbial community of rhizosphere soil[J]. Biology and Fertility of Soils,2012,48(7):807-816.
[24] Shen Z Z,Wang B B,Lv N,et al. Effect of the combination of bio-organic fertilizer with Bacillus amyloliquefaciens NJN-6 on the control of banana Fusarium wilt disease,crop production and banana rhizosphere culturable microflora[J]. Biocontrol Science and Technology,2015,25(6):716-731.
[25] 徐丽霞. 谷田土壤微生物多样性及对谷子生理生化和产量的影响[D]. 太原:山西大学,2019. Xu L X. Diversity of soil microorganisms in grain fields and their effects on millet effects of physiology,biochemistry and yield[D]. Taiyuan:Shanxi University,2019(in Chinese with English abstract).
[26] Hartmann M,Frey B,Mayer J,et al. Distinct soil microbial diversity under long-term organic and conventional farming[J]. The ISME Journal,2015,9(5):1177-1194.
[27] Zhao J,Zhang R F,Xue C,et al. Pyrosequencing reveals contrasting soil bacterial diversity and community structure of two main winter wheat cropping systems in China[J]. Microbial Ecology,2014,67(2):443-453.
[28] Zhang F G,Zhu Z,Yang X M,et al. Trichoderma harzianum T-E5 significantly affects cucumber root exudates and fungal community in the cucumber rhizosphere[J]. Applied Soil Ecology,2013,72:41-48.
[29] 乔策策,王甜甜,王若斐,等. 高效溶磷菌的筛选及其促生效应研究[J]. 南京农业大学学报,2017,40(4):664-670. DOI:10.7685/jnau.201606030. Qiao C C,Wang T T,Wang R F,et al. Screening phosphate solubilizing bacterial strains from maize rhizosphere and research on their plant growth promotion effect[J]. Journal of Nanjing Agricultural University,2017,40(4):664-670(in Chinese with English abstract).
[30] Zhang S Y,Fan C,Wang Y X,et al. Salt-tolerant and plant-growth-promoting bacteria isolated from high-yield paddy soil[J]. Canadian Journal of Microbiology,2018,64(12):968-978.
[31] El-Tarabily K A. Suppression of Rhizoctonia solani diseases of sugar beet by antagonistic and plant growth-promoting yeasts[J]. Journal of Applied Microbiology,2004,96(1):69-75.
[32] 陈巧玲,胡江,汪汉成,等. 生物有机肥对盆栽烟草根际青枯病原菌和短短芽孢杆菌数量的影响[J]. 南京农业大学学报,2012,35(1):75-79. DOI:10.7685/j.jssn.1000-2030.2012.01.013. Chen Q L,Hu J,Wang H C,et al. Effects of bio-organic fertilizer application on population of Ralstonia solanacearum and Brevibacillus brevis in tobacco rhizosphere[J]. Journal of Nanjing Agricultural University,2012,35(1):75-79(in Chinese with English abstract).
[33] 李俊华,蔡和森,尚杰,等. 生物有机肥对新疆棉花黄萎病防治的生物效应[J]. 南京农业大学学报,2010,33(6):50-54. DOI:10.7685/j.jssn.1000-2030.2010.06.010. Li J H,Cai H S,Shang J,et al. Effects of controlling to cotton virticillium wilt with bio-organic fertilizer in Xinjiang[J]. Journal of Nanjing Agricultural University,2010,33(6):50-54(in Chinese with English abstract).

相似文献/References:

[1]陈巧玲,胡江*,汪汉成,等.生物有机肥对盆栽烟草根际青枯病原菌和短短芽孢杆菌数量的影响[J].南京农业大学学报,2012,35(1):75.[doi:10.7685/j.issn.1000-2030.2012.01.013]
 CHEN Qiao-ling,HU Jiang*,WANG Han-cheng,et al.Effects of bio-organic fertilizer application on population of Ralstonia solanacearum and Brevibacillus brevis in tobacco rhizosphere[J].Journal of Nanjing Agricultural University,2012,35(4):75.[doi:10.7685/j.issn.1000-2030.2012.01.013]
[2]高雪莲,邓开英,张鹏,等.不同生物有机肥对甜瓜土传枯萎病防治效果及对根际土壤微生物区系的影响[J].南京农业大学学报,2012,35(6):55.[doi:10.7685/j.issn.1000-2030.2012.06.010]
 GAO Xue-lian,DENG Kai-ying,ZHANG Peng,et al.Effects of different bio-organic fertilizers on fusarium wilt control and on the rhizosphere microbial community with muskmelon[J].Journal of Nanjing Agricultural University,2012,35(4):55.[doi:10.7685/j.issn.1000-2030.2012.06.010]
[3]张国漪,丁传雨,任丽轩,等.菌根真菌和死谷芽孢杆菌生物有机肥对连作棉花黄萎病的协同抑制[J].南京农业大学学报,2012,35(6):68.[doi:10.7685/j.issn.1000-2030.2012.06.012]
 ZHANG Guo-yi,DING Chuan-yu,REN Li-xuan,et al.The synergetic inhibition effect of arbuscular mycorrhizal fungi cooperated Bacillus vallismortis organic fertilizer on cotton Verticillium wilt[J].Journal of Nanjing Agricultural University,2012,35(4):68.[doi:10.7685/j.issn.1000-2030.2012.06.012]
[4]邓开英,凌宁,张鹏,等.专用生物有机肥对营养钵西瓜苗生长和根际微生物区系的影响[J].南京农业大学学报,2013,36(2):103.[doi:10.7685/j.issn.1000-2030.2013.02.017]
 DENG Kaiying,LING Ning,ZHANG Peng,et al.Effects of bio-organic fertilizers on the growth and rhizosphere microflora of watermelon plants in nursery pots[J].Journal of Nanjing Agricultural University,2013,36(4):103.[doi:10.7685/j.issn.1000-2030.2013.02.017]
[5]张鹏,韦中,朱震,等.生物有机肥对连作番茄和辣椒根际土壤微生物区系及茄科雷尔氏菌的影响[J].南京农业大学学报,2013,36(4):77.[doi:10.7685/j.issn.1000-2030.2013.04.013]
 ZHANG Peng,WEI Zhong,ZHU Zhen,et al.Effect of a bio-organic fertilizer on microbial flora and Ralstonia solanacearum population in rhizosphere soils of continuous cropping tomato and pepper[J].Journal of Nanjing Agricultural University,2013,36(4):77.[doi:10.7685/j.issn.1000-2030.2013.04.013]
[6]马田田,蔡枫,丁传雨,等.山药专用生物有机肥的生物效应研究[J].南京农业大学学报,2013,36(4):83.[doi:10.7685/j.issn.1000-2030.2013.04.014]
 MA Tiantian,CAI Feng,DING Chuanyu,et al.Biological effects of special bio-organic fertilizer on yam[J].Journal of Nanjing Agricultural University,2013,36(4):83.[doi:10.7685/j.issn.1000-2030.2013.04.014]
[7]曹亮亮,张苗,施娟娟,等.添加蛋白原料辅助固态发酵生产功能菌生物有机肥的研究[J].南京农业大学学报,2014,37(2):85.[doi:10.7685/j.issn.1000-2030.2014.02.014]
 CAO Liangliang,ZHANG Miao,SHI Juanjuan,et al.Adding protein materials as solid-state fermentation media for producing bio-organic fertilizers with functional microbes[J].Journal of Nanjing Agricultural University,2014,37(4):85.[doi:10.7685/j.issn.1000-2030.2014.02.014]
[8]陈希,赵爽,史亚东,等.生物有机肥对‘滁菊’连作障碍的影响[J].南京农业大学学报,2015,38(1):50.[doi:10.7685/j.issn.1000-2030.2015.01.008]
 CHEN Xi,ZHAO Shuang,SHI Yadong,et al.Effects of bio-organic fertilizer application on the continuous cropping obstacles of Chrysanthemum morifolium Tzvel.‘Chuju’[J].Journal of Nanjing Agricultural University,2015,38(4):50.[doi:10.7685/j.issn.1000-2030.2015.01.008]
[9]韦中,胡洁,董月,等.基于菜粕有机肥筛选番茄青枯病高效生防菌的研究[J].南京农业大学学报,2015,38(3):424.[doi:10.7685/j.issn.1000-2030.2015.03.011]
 WEI Zhong,HU Jie,DONG Yue,et al.Screen of antagonists against Ralstonia solanacearum by using rapeseed cake compost as a selected medium[J].Journal of Nanjing Agricultural University,2015,38(4):424.[doi:10.7685/j.issn.1000-2030.2015.03.011]
[10]巩子毓,高旭,黄炎,等.连续施用生物有机肥提高设施黄瓜产量和品质的研究[J].南京农业大学学报,2016,39(5):777.[doi:10.7685/jnau.201602020]
 GONG Ziyu,GAO Xu,HUANG Yan,et al.Research on continuous application of bio-organic fertilizer for improving greenhouse cucumber yield and quality[J].Journal of Nanjing Agricultural University,2016,39(4):777.[doi:10.7685/jnau.201602020]

备注/Memo

备注/Memo:
收稿日期:2019-08-12。
基金项目:国家重点研发计划项目(2017YFD0200805);中央高校基本科研业务费专项资金(KYZ201871)
作者简介:刘正洋,硕士研究生。
通信作者:李荣,教授,博士,从事土壤微生物分子生态学研究,E-mail:lirong@njau.edu.cn。
更新日期/Last Update: 1900-01-01