[1]谢婉滢,邹希.浮萍叶面细菌群落对砷的氧化及该过程受抗生素的影响[J].南京农业大学学报,2020,43(4):667-673.[doi:10.7685/jnau.201906059]
 XIE Wanying,ZOU Xi.Arsenite oxidation by phyllosphere bacterial community of duckweed and the effect of antibiotics on this process[J].Journal of Nanjing Agricultural University,2020,43(4):667-673.[doi:10.7685/jnau.201906059]
点击复制

浮萍叶面细菌群落对砷的氧化及该过程受抗生素的影响()
分享到:

《南京农业大学学报》[ISSN:1000-2030/CN:32-1148/S]

卷:
43卷
期数:
2020年4期
页码:
667-673
栏目:
生物与环境
出版日期:
2020-07-13

文章信息/Info

Title:
Arsenite oxidation by phyllosphere bacterial community of duckweed and the effect of antibiotics on this process
作者:
谢婉滢 邹希
南京农业大学资源与环境科学学院/江苏省固体有机废弃物资源化高技术研究重点实验室/江苏省有机固体废弃物资源化协同创新中心, 江苏 南京 210095
Author(s):
XIE Wanying ZOU Xi
College of Resources and Environmental Sciences/Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization/Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
关键词:
浮萍叶面细菌砷氧化抗生素
Keywords:
duckweedphyllosphere bacteriaarsenite oxidationantibiotics
分类号:
X172
DOI:
10.7685/jnau.201906059
摘要:
[目的] 本文旨在探讨浮萍叶面细菌群落对三价砷(AsⅢ)的氧化、对浮萍累积砷(As)的阻控作用以及抗生素对该氧化过程和阻控作用的影响。[方法] 采用高效液相色谱-电感耦合等离子体-质谱(HPLC-ICP-MS)联用技术和ICP-MS测定添加110 μg·L-1 AsⅢ的有菌浮萍、有菌浮萍+抗生素(50 mg·L-1氯霉素)、无菌浮萍处理和空白对照中溶液As形态随时间的变化情况,以及培养168 h时不同处理中浮萍As的形态以及总累积量。在培养168 h时,从培养溶液和叶面分离可培养细菌,并在纯培养条件下测定其对AsⅢ的氧化能力。[结果] 与空白对照及无菌浮萍处理相比,有菌浮萍处理能够在10 h内将溶液中AsⅢ快速氧化为五价砷(AsⅤ),使溶液中的AsⅤ比例大于97.1%。有菌浮萍+抗生素处理中AsⅤ质量浓度超过AsⅢ质量浓度的时间推迟到72 h,且AsⅤ占As比例仅为70.2%。经过168 h的培养,无菌浮萍及添加氯霉素的有菌浮萍处理中累积的As总含量分别为有菌浮萍处理的3.4和2.9倍。与有菌浮萍处理相比,氯霉素显著增加浮萍中累积的AsⅢ的比例(P<0.05)。从有菌浮萍处理的浮萍叶面获得7株具有较弱AsⅢ氧化能力的细菌,这些AsⅢ氧化菌隶属于α-变形菌、β-变形菌和γ-变形菌。从有菌浮萍处理的溶液中以及有菌浮萍+抗生素处理中分离获得的细菌对AsⅢ均未表现出氧化能力。[结论] 浮萍叶面细菌群落将AsⅢ快速氧化为AsⅤ的过程对累积As具有非常好的阻控作用。氯霉素显著抑制浮萍叶面细菌群落对AsⅢ的氧化,增加浮萍对As的累积以及AsⅢ在浮萍中的比例。
Abstract:
[Objectives] The present study was designed to investigate arsenite(AsⅢ) oxidation by phyllosphere bacterial community of duckweed,the effect of the oxidation on arsenic(As) accumulation in the duckweed and the effect of antibiotics on the processes of oxidation and accumulation.[Methods] High performance liquid chromatography inductively coupled plasma-mass spectrometry(HPLC-ICP-MS) was employed to measure the temporal speciation of As in the incubation systems of non-sterile duckweed,non-sterile duckweed supplemented with antibiotics(50 mg·L-1 chloramphenicol),sterile duckweed and control without duckweed that contained 110 μg·L-1 AsⅢ,respectively. At 168 h,speciation and total concentration of As in duckweed from different treatments were determined by HPLC-ICP-MS and ICP-MS,respectively. Bacteria were isolated from the incubation systems at 168 h and their abilities to oxidize AsⅢ were measured by HPLC-ICP-MS.[Results] In comparison to sterile duckweed,the incubation system with non-sterile duckweed could oxidize AsⅢ into arsenate(AsⅤ) rapidly within 10 h,generating 97.1% of AsⅤ in the system. The addition of chloramphenicol delayed the occurrence of AsⅤ domination in the system to 72 h,with the percentage of AsⅤ at only 70.2%. After an incubation period of 168 h,total contents of As in sterile duckweed and non-sterile duckweed with chloramphenicol were 3.4 and 2.9 times of those in non-sterile duckweed,respectively. The addition of chloramphenicol significantly increased the percentage of AsⅢ in the duckweed(P<0.05),compared to that in non-sterile duckweed. Seven AsⅢ-oxidizing bacteria with low oxidation ability that belonged to α-proteobacteria, β-proteobacteria and γ-proteobacteria were isolated from the phyllosphere of non-sterile duckweed. The bacteria isolated from the solution of non-sterile duckweed or from the system of non-sterile duckweed with chloramphenicol showed no oxidation of AsⅢ.[Conclusions] The rapid oxidation of AsⅢ by the phyllosphere bacteria community of duckweed was effective in preventing the As accumulation in duckweed. However,chloramphenicol significantly inhibited the oxidation of AsⅢ by the phyllosphere bacteria,and increased the As accumulation by the duckweed and the percentage of AsⅢ in duckweed tissue.

参考文献/References:

[1] 薛喜枚,朱永官. 土壤中砷的生物转化及砷与抗生素抗性的关联[J]. 土壤学报,2019,56(4):763-772. Xue X M,Zhu Y G. Arsenic biotransformation in soils and its relationship with antibiotic resistance[J]. Acta Pedologica Sinica,2019,56(4):763-772(in Chinese with English abstract).
[2] Jia Y,Huang H,Chen Z,et al. Arsenic uptake by rice is influenced by microbe-mediated arsenic redox changes in the rhizosphere[J]. Environmental Science & Technology,2014,48(2):1001-1007.
[3] Zhao F J,McGrath S P,Meharg A A. Arsenic as a food chain contaminant:mechanisms of plant uptake and metabolism and mitigation strategies[J]. Annual Review of Plant Biology,2010,61(1):535-559.
[4] Zhang J,Zhao S,Xu Y,et al. Nitrate stimulates anaerobic microbial arsenite oxidation in paddy soils[J]. Environmental Science & Technology,2017,51(8):4377-4386.
[5] Zhang J,Zhou W,Liu B,et al. Anaerobic arsenite oxidation by an autotrophic arsenite-oxidizing bacterium from an arsenic-contaminated paddy soil[J]. Environmental Science & Technology,2015,49(10):5956-5964.
[6] Xie W Y,Su J Q,Zhu Y G. Phyllosphere bacterial community of floating macrophytes in paddy soil environments as revealed by Illumina high-throughput sequencing[J]. Applied and Environmental Microbiology,2015,81(2):522-532.
[7] Xie W Y,Su J Q,Zhu Y G. Arsenite oxidation by the phyllosphere bacterial community associated with Wolffia australiana[J]. Environmental Science & Technology,2014,48(16):9668-9674.
[8] Silva V,Igrejas G,Poeta P. Antibiotics pollution in the paddy soil environment[M]//Soil Biology. Cham:Springer International Publishing,2018:85-97.
[9] Sun J,Zeng Q,Tsang D C W,et al. Antibiotics in the agricultural soils from the Yangtze River Delta,China[J]. Chemosphere,2017,189:301-308.
[10] Zhou G W,Yang X R,Su J Q,et al. Bacillus ferrooxidans sp. nov.,an iron(Ⅱ)-oxidizing bacterium isolated from paddy soil[J]. Journal of Microbiology,2018,56(7):472-477.
[11] Yamamura S,Watanabe K,Suda W,et al. Effect of antibiotics on redox transformations of arsenic and diversity of arsenite-oxidizing bacteria in sediment microbial communities[J]. Environmental Science & Technology,2014,48(1):350-357.
[12] Zhu Y G,Yoshinaga M,Zhao F J,et al. Earth abides arsenic biotransformations[J]. Annual Review of Earth and Planetary Sciences,2014,42(1):443-467.
[13] Zhao F J,Ma J F,Meharg A A,et al. Arsenic uptake and metabolism in plants[J]. New Phytologist,2009,181(4):777-794.
[14] Schwarz S,Kehrenberg C,Doublet B,et al. Molecular basis of bacterial resistance to chloramphenicol and florfenicol[J]. FEMS Microbiology Reviews,2004,28(5):519-542.
[15] Xie W Y,Shen Q,Zhao F J. Antibiotics and antibiotic-resistance from animal manures to soil:a review[J]. European Journal of Soil Science,2018,69:181-195.
[16] Qiao M,Ying G G,Singer A C,et al. Review of antibiotic resistance in China and its environment[J]. Environment International,2018,110:160-172.

备注/Memo

备注/Memo:
收稿日期:2019-06-28。
基金项目:国家自然科学基金项目(41501260);中央高校基本科研业务费专项资金(KJQN201669)
作者简介:谢婉滢,讲师,主要从事环境微生物学研究,E-mail:wyxie@njau.edu.cn。
更新日期/Last Update: 1900-01-01