[1]朱燕香,潘剑君,白浩然,等.基于Sentinel-2A影像的OPTRAM模型及其改进模型的土壤水分估算研究[J].南京农业大学学报,2020,43(4):682-689.[doi:10.7685/jnau.201910012]
 ZHU Yanxiang,PAN Jianjun,BAI Haoran,et al.Soil moisture estimation with the OPTRAM model and its improved model based on Sentinel-2A data[J].Journal of Nanjing Agricultural University,2020,43(4):682-689.[doi:10.7685/jnau.201910012]
点击复制

基于Sentinel-2A影像的OPTRAM模型及其改进模型的土壤水分估算研究()
分享到:

《南京农业大学学报》[ISSN:1000-2030/CN:32-1148/S]

卷:
43卷
期数:
2020年4期
页码:
682-689
栏目:
生物与环境
出版日期:
2020-07-13

文章信息/Info

Title:
Soil moisture estimation with the OPTRAM model and its improved model based on Sentinel-2A data
作者:
朱燕香 潘剑君 白浩然 康翔
南京农业大学资源与环境科学学院, 江苏 南京 210095
Author(s):
ZHU Yanxiang PAN Jianjun BAI Haoran KANG Xiang
College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
关键词:
Sentinel-2AOPTRAM混合像元分解NDVI-DFI模型
Keywords:
Sentinel-2AOPTICAL TRApezoid Model(OPTRAM)mixed-pixel decompositionNDVI-DFI model
分类号:
TP79
DOI:
10.7685/jnau.201910012
摘要:
[目的] 本文旨在探讨基于Sentinel-2A影像的OPTRAM模型反演土壤水分在江苏省南京市六合区的适用性,并改进OPTRAM模型提高反演精度。[方法] 利用NDVI-DFI像元三分模型对Sentinel-2A影像混合像元进行分解,将得到的光合植被覆盖度代替OPTRAM模型中的归一化植被指数(NDVI)。[结果] OPTRAM土壤水分反演效果(R2=0.38)与温度植被干旱指数(TVDI)方法的拟合结果(R2=0.39)相近,特征空间分布均呈梯形;像元三分模型在南京地区具有可分性,在此基础上改进的OPTRAM模型的STR-Fpv空间分布符合该基础模型的分布特征,改进的模型与实测10 cm土壤水分的相关系数(R2)提高到0.55。[结论] OPTRAM模型在南京市六合区反演土壤水分是可行的,用像元三分模型改进的OPTRAM模型能够提高反演精度,可进一步应用于其他相关模型。
Abstract:
[Objectives] This study was to explore the applicability of the OPTICAL TRApezoid Model(OPTRAM) for soil moisture estimation in Nanjing Luhe District utilizing Sentinel-2 image data,and increase the soil moisture retrieval accuracy through utilizing the improved OPTRAM.[Methods] Normalized difference vegetation index(NDVI) in the OPTRAM was replaced with the photosynthetic vegetation coverage,which was obtained by the NDVI-DFI model decomposing the mixed-pixel of Sentinel-2A image.[Results] The inversion effect of OPTRAM soil moisture(R2=0.38) was similar to the fitting result of TVDI method(R2=0.39),and the characteristic spatial distribution was trapezoidal;the NDVI-DFI model was separable in Nanjing;the spatial distribution of STR-Fpv of the improved OPTRAM model conformed to the distribution characteristics of the basic model. The correlation coefficient of the improved model with the measured 10 cm soil moisture increased to 0.55.[Conclusions] The OPTRAM had a great feasibility on the retrieval of soil moisture in Luhe District of Nanjing. The improved OPTRAM model based on the NDVI-DFI model could improve the retrieval accuracy,which also could be applied to other related models in the future.

参考文献/References:

[1] Bao Y,Lin L,Wu S,et al. Surface soil moisture retrievals over partially vegetated areas from the synergy of Sentinel-1 and Landsat 8 data using a modified water-cloud model[J]. International Journal of Applied Earth Observation and Geoinformation,2018,72:76-85.
[2] 张钧泳,丁建丽,谭娇. 基于SVM的绿洲荒漠交错带土壤水分与地下水埋深反演[J]. 农业机械学报,2019,50(3):221-230. Zhang J Y,Ding J L,Tan J. Inversion of soil moisture and shallow groundwater depth based on SVM in arid oasis-desert ecotone[J]. Transactions of the Chinese Society for Agricultural Machinery,2019,50(3):221-230(in Chinese with English abstract).
[3] 冯海霞,秦其明,李滨勇,等. 基于SWIR-Red光谱特征空间的农田干旱监测新方法[J]. 光谱学与光谱分析,2011,31(11):3069-3073. Feng H X,Qin Q M,Li B Y,et al. The new method monitoring agricultural drought based on SWIR-red spectrum feature space[J]. Spectroscopy and Spectral Analysis,2011,31(11):3069-3073(in Chinese with English abstract).
[4] 赵天杰. 被动微波反演土壤水分的L波段新发展及未来展望[J]. 地理科学进展,2018,37(2):198-213. Zhao T J. Recent advances of L-band application in the passive microwave remote sensing of soil moisture and its prospects[J]. Progress in Geography,2018,37(2):198-213(in Chinese with English abstract).
[5] 兰鑫宇,郭子祺,田野,等. 土壤湿度遥感估算同化研究综述[J]. 地球科学进展,2015,30(6):668-679. Lan X Y,Guo Z Q,Tian Y,et al. Review in soil moisture remote sensing estimation based on data assimilation[J]. Advances in Earth Science,2015,30(6):668-679(in Chinese with English abstract).
[6] 贾艳昌,谢谟文,姜红涛. 全球36 km格网土壤水分逐日估算[J]. 地球信息科学学报,2017,19(6):854-860. Jia Y C,Xie M W,Jiang H T. Daily estimate of global 36 km grid soil moisture[J]. Journal of Geo-Information Science,2017,19(6):854-860(in Chinese with English abstract).
[7] de Zan F,Gomba G. Vegetation and soil moisture inversion from SAR closure phases:first experiments and results[J]. Remote Sensing of Environment,2018,217:562-572.
[8] 万红,高硕,郭鹏. 青藏高原地区FY-3B微波遥感土壤水分产品适用性研究[J]. 干旱区资源与环境,2018,32(4):132-137. Wan H,Gao S,Guo P. Applicability evaluation of FY-3B remote sensing soil moisture products in the Tibetan Plateau[J]. Journal of Arid Land Resources and Environment,2018,32(4):132-137(in Chinese with English abstract).
[9] 葛少青,张剑,孙文,等. 三种干旱指数在干旱区沼泽湿地土壤水分遥感反演中的应用[J]. 生态学报,2018,38(7):2299-2307. Ge S Q,Zhang J,Sun W,et al. Application of three drought indexes in soil moisture inversion using remote sensing in marsh wetlands of arid area[J]. Acta Ecologica Sinica,2018,38(7):2299-2307(in Chinese with English abstract).
[10] 高中灵,王建华,郑小坡,等. ADI土壤水分反演方法[J]. 光谱学与光谱分析,2016,36(5):1378-1381. Gao Z L,Wang J H,Zheng X P,et al. Soil moisture monitoring based on angle dryness index[J]. Spectroscopy and Spectral Analysis,2016,36(5):1378-1381(in Chinese with English abstract).
[11] 王鹏新,龚健雅,李小文,等. 条件植被温度指数及其在干旱监测中的应用[J]. 武汉大学学报(信息科学版),2001,26(5):412-418. Wang P X,Gong J Y,Li X W,et al. Vegetation temperature condition index and its application for drought monitoring[J]. Geomatics and Information Science of Wuhan University,2001,26(5):412-418(in Chinese with English abstract).
[12] 詹志明,秦其明,阿布都瓦斯提·吾拉木,等. 基于NIR-Red光谱特征空间的土壤水分监测新方法[J]. 中国科学(D辑:地球科学),2006,36(11):1020-1026. Zhan Z M,Qin Q M,Abuduwasiti Wulamu,et al. New method on soil water observation based on NIR-Red spectrum feature space[J]. Science in China(Series D:Earth Sciences),2006,36(11):1020-1026(in Chinese).
[13] Ghulam A,Qin Q,Teyip T,et al. Modified perpendicular drought index(MPDI):a real-time drought monitoring method[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2007,62(2):150-164.
[14] 吴春雷,秦其明,李梅,等. 基于光谱特征空间的农田植被区土壤湿度遥感监测[J]. 农业工程学报,2014,30(16):106-112. Wu C L,Qin Q M,Li M,et al. Soil moisture monitoring of vegetative area in farmland by remote sensing based on spectral feature space[J]. Transactions of the Chinese Society of Agricultural Engineering,2014,30(16):106-112(in Chinese with English abstract).
[15] Sandholt I,Rasmussen K,Andersen J. A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status[J]. Remote Sensing of Environment,2002,79(2):213-224.
[16] Babaeian E,Sadeghi M,Franz T E,et al. Mapping soil moisture with the OPtical TRApezoid Model(OPTRAM)based on long-term MODIS observations[J]. Remote Sensing of Environment,2018,211:425-440.
[17] Sadeghi M,Babaeian E,Tuller M,et al. The optical trapezoid model:a novel approach to remote sensing of soil moisture applied to Sentinel-2 and Landsat-8 observations[J]. Remote Sensing of Environment,2017,198:52-68.
[18] Asner G P. Biophysical and biochemical sources of variability in canopy reflectance[J]. Remote Sensing of Environment,1998,64(3):234-253.
[19] 王光镇,王静璞,邹学勇,等. 基于像元三分模型的锡林郭勒草原光合植被和非光合植被覆盖度估算[J]. 生态学报,2017,37(17):5722-5731. Wang G Z,Wang J P,Zou X Y,et al. Estimation of fractional cover of photosynthetic and non-photosynthetic vegetation in the Xilingol Steppe Region using the NDVI-DFI model[J]. Acta Ecologica Sinica,2017,37(17):5722-5731(in Chinese with English abstract).
[20] 韩丽娟,王鹏新,王锦地,等. 植被指数-地表温度构成的特征空间研究[J]. 中国科学(D辑:地球科学),2005,35(4):371-377. Han L J,Wang P X,Wang J D,et al. Surface temperature vegetation index-congstitute the characteristics of space research[J]. Science in China(Series D:Earth Sciences),2005,35(4):371-377(in Chinese).
[21] 牛立元,茹振钢. 小麦叶片叶绿素含量系统变化规律研究[J]. 麦类作物,1999,19(2):36-38. Niu L Y,Ru Z G. Study on the systematic change of chlorophyll content in wheat leaves[J]. Tritical Crops,1999,19(2):36-38(in Chinese).
[22] 王行汉,丛沛桐,亢庆,等. 非线性拟合LST/NDVI特征空间干湿边优于传统线性拟合方法的讨论[J]. 农业工程学报,2017,33(11):306-314. Wang X H,Cong P T,Kang Q,et al. Discussion on method of nonlinear fitting dry and wet edges of LST/NDVI feature space better than traditional linear fitting method[J]. Transactions of the Chinese Society of Agricultural Engineering,2017,33(11):306-314(in Chinese with English abstract).
[23] 鲍艳松,严婧,闵锦忠,等. 基于温度植被干旱指数的江苏淮北地区农业旱情监测[J]. 农业工程学报,2014,30(7):163-172,294. Bao Y S,Yan J,Min J Z,et al. Agricultural drought monitoring in north Jiangsu by using temperature vegetation dryness index[J]. Transactions of the Chinese Society of Agricultural Engineering,2014,30(7):163-172,294(in Chinese with English abstract).
[24] 吴欣睿,那晓东,臧淑英. 温度植被干旱指数在2000-2015年松嫩平原土壤湿度中的应用[J]. 生态学报,2019,39(12):4432-4441. Wu X R,Na X D,Zang S Y. Application of temperature vegetation dryness index in the estimation of soil moisture of the Songnen Plain[J]. Acta Ecologica Sinica,2019,39(12):4432-4441(in Chinese with English abstract).
[25] 王秀君,陈健. 基于LST-EVI特征空间的土壤水分含量反演[J]. 遥感技术与应用,2014,29(1):46-53. Wang X J,Chen J. Soil moisture estimation based on the LST-EVI feature space[J]. Remote Sensing Technology and Application,2014,29(1):46-53(in Chinese with English abstract).

相似文献/References:

[1]韩涛,潘剑君,罗川,等.多时相Sentinel-2A与SPOT-7影像在油菜识别中的差异[J].南京农业大学学报,2018,41(4):691.[doi:10.7685/jnau.201711016]
 HAN Tao,PAN Jianjun,LUO Chuan,et al.Differences between multi-temporal Sentinel-2A and SPOT-7 imagery in rape identification[J].Journal of Nanjing Agricultural University,2018,41(4):691.[doi:10.7685/jnau.201711016]

备注/Memo

备注/Memo:
收稿日期:2019-10-14。
基金项目:江苏高校优势学科建设工程资助项目
作者简介:朱燕香,硕士研究生。
通信作者:潘剑君,博导,教授,主要从事土壤调查与评价方面的研究,E-mail:jpan@njau.edu.cn。
更新日期/Last Update: 1900-01-01