[1]张峰,郑卫江,姚文.日粮铜水平对大鼠肠道和肝脏组织形态、铜离子代谢及氧化还原平衡的影响[J].南京农业大学学报,2020,43(4):728-739.[doi:10.7685/jnau.201907029]
 ZHANG Feng,ZHENG Weijiang,YAO Wen.Effects of dietary copper level on the tissue morphology,copper metabolism and redox balance of intestines and liver in SD rats[J].Journal of Nanjing Agricultural University,2020,43(4):728-739.[doi:10.7685/jnau.201907029]
点击复制

日粮铜水平对大鼠肠道和肝脏组织形态、铜离子代谢及氧化还原平衡的影响()
分享到:

《南京农业大学学报》[ISSN:1000-2030/CN:32-1148/S]

卷:
43卷
期数:
2020年4期
页码:
728-739
栏目:
动物科学
出版日期:
2020-07-13

文章信息/Info

Title:
Effects of dietary copper level on the tissue morphology,copper metabolism and redox balance of intestines and liver in SD rats
作者:
张峰 郑卫江 姚文
南京农业大学动物科技学院, 江苏 南京 210095
Author(s):
ZHANG Feng ZHENG Weijiang YAO Wen
College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
关键词:
大鼠高铜抗生素耐药性铜代谢氧化还原平衡
Keywords:
rathigh-level copperantibiotic resistancecopper metabolismredox balance
分类号:
S816.2
DOI:
10.7685/jnau.201907029
摘要:
[目的] 本试验旨在研究日粮铜水平对大鼠血清生化指标、肠道和肝脏组织形态及氧化还原平衡、肝脏铜离子代谢的影响,为探讨仔猪日粮适宜铜水平提供参考。[方法] 采用单因素试验设计,选择21日龄雄性斯泼累格·多雷(SD)大鼠60只,随机分为3组:对照组(C,6 mg·kg-1Cu);处理组1(T1,120 mg·kg-1Cu);处理组2(T2,240 mg·kg-1Cu),每组5个重复,每个重复4只大鼠,预试期1周,正式饲喂8周后,每个处理组选择10只大鼠(每个重复2只),采集血清、肝脏、小肠(十二指肠、空肠、回肠)组织及食糜(回肠和结肠)样品,观察肝脏及小肠组织形态,测定氧化还原反应、血清生化指标、肝脏铜转运相关蛋白基因表达。[结果] 与C组相比,T2组大鼠血清中胰岛素(insulin)、胃饥饿素(ghrelin)、肿瘤坏死因子α(TNF-α)水平和肝脏中锰-超氧化物歧化酶(Mn-SOD)活性显著升高(P<0.05),T1和T2组大鼠空肠和回肠组织中一氧化氮(NO)水平及回肠SOD活性显著降低(P<0.05),大鼠肝脏SOD和谷胱甘肽过氧化物酶(GSH-px)活性显著升高(P<0.05)。与C组和T2组相比,T1组大鼠肝脏铜锌超氧化物歧化酶(CuZn-SOD)活性显著升高,大鼠肝脏组织中铜锌超氧化物歧化酶基因(Sod1)、金属硫蛋白基因(Mt1a)和铜蓝蛋白基因(Cp)mRNA表达水平显著上调(P<0.05)。与C组和T1组相比,T2组大鼠回肠绒毛高度和隐窝深度显著降低,大鼠肝脏铜转运蛋白基因(Ctr1)mRNA表达水平显著下调(P<0.05)。血清TNF-α水平与大鼠回肠食糜铜含量(r=0.54)及结肠食糜铜含量(r=0.63)显著正相关(P<0.05),回肠食糜铜含量与回肠组织NO水平(r=-0.57)和SOD活性(r=-0.62)显著负相关;大鼠肝脏中铜含量与肝脏SOD(r=0.59)和CuZn-SOD活性(r=0.70)及其伴侣蛋白基因(Ccs)mRNA表达水平(r=0.65)显著正相关。[结论] 大鼠长期摄入120 mg·kg-1铜日粮时,肝脏抗氧化酶活性及铜转运相关基因表达水平升高,有利于大鼠保持肝脏铜的稳态;大鼠采食240 mg·kg-1铜日粮,肝脏中Ctr1表达显著下调,铜离子摄取减少,肝脏铜稳态得以维持。日粮中铜(120和240 mg·kg-1)吸收率低,主要滞留于肠道,大鼠回肠食糜铜积累引起回肠组织的损伤,改变回肠组织氧化还原平衡,引起大鼠机体炎症反应,不利于大鼠的健康。
Abstract:
[Objectives] This experiment was conducted to investigate the effects of dietary copper level on the serum biochemical parameters,intestine and liver tissue morphology and redox balance,liver copper ion metabolism of rats,and to provide the data basis for dietary supplementation of piglets.[Methods] A single factor test design was used in this experimental design,sixty male Sprague Dawley(SD) rats at 21 days old were randomly divided into three groups:control group(C,6 mg·kg-1 Cu),treatment group 1(T1,120 mg·kg-1 Cu),treatment group 2(T2,240 mg·kg-1 Cu);each group had 5 replicates,each replicate had 4 rats. After feeding for eight weeks,ten rats from each treatment group(2 rats of each replicate) were randomly selected and sacrificed to collect blood,tissue(liver and small intestine) and chyme(ileum and colon) samples.[Results] Compared with control group,the serum insulin,ghrelin and tumor necrosis factor-α(TNF-α) levels,and the liver manganese superoxide dismutase(Mn-SOD) activity in T2 group significantly increased(P<0.05);the nitric oxide(NO) level (jejunum and ileum) and the superoxide dismutase(SOD) activity(ileum) in T1 and T2 group significantly decreased(P<0.05),and the liver SOD and glutathione peroxidase(GSH-px) activities in T1 and T2 group significantly increased(P<0.05). Compared with control and T2 group,the liver Cu-Zn superoxide dismutase(CuZn-SOD) activity increased,the mRNA expression of Cu-Zn superoxide dismutase gene(Sod1),metallothionein gene(Mt1a) and ceruloplasmin gene(Cp) in liver significantly up-regulated in T1 group(P<0.05). Compared with control and T1 group,the ileal villus height and crypt depth significantly decreased,and the mRNA expression of liver copper transporter gene(Ctr1) significantly down-regulated in T2 group(P<0.05). Correlation results showed that there was a significant positive correlation between chyme copper content(ileum and colon) and serum TNF-α level(r=0.54,r=0.63),and a significant negative correlation between ileal chyme copper content and ileal tissue NO level(r=-0.57) and SOD(r=-0.62) levels;the significantly positive correlation was also observed between liver copper content and SOD(r=0.59) and CuZn-SOD activity(r=0.70),copper chaperones gene(Ccs) mRNA expression(r=0.65).[Conclusions] In summary,when rats were fed with 120 mg·kg-1 copper for 8 weeks,the activities of antioxidant enzymes and copper transport-related genes expression levels in liver tissue increased,which was conducive to maintaining the stable state of copper in the liver of rats. The expression of Ctr1 gene was significantly down-regulated and copper uptake decreased in liver when rats were fed with 240 mg·kg-1 copper diet,which also maintained the copper homeostasis. Most of the dietary copper was not absorbed,and accumulated in the ileal chime. This high level copper could cause the damage of ileal tissue,unbalance the redox of ileal tissue,and further induce the inflammatory response in rats,which was not conducive to the health of rats.

参考文献/References:

[1] Turski M L,Thiele D J. New roles for copper metabolism in cell proliferation,signaling,and disease[J]. Journal of Biological Chemistry,2009,284(2):717-721.
[2] Pang Y,Patterson J A,Applegate T J. The influence of copper concentration and source on ileal microbiota[J]. Poultry Science,2009,88(3):586-592.
[3] Hordyjewska A,Popiolek L,Kocot J. The many ‘faces’ of copper in medicine and treatment[J]. Biometals,2014,27(4):611-621.
[4] Haas K L,Putterman A B,White D R,et al. Model peptides provide new insights into the role of histidine residues as potential ligands in human cellular copper acquisition via Ctr1[J]. Journal of the American Chemical Society,2011,133(12):4427-4437.
[5] Kim H,Son H Y,Bailey S M,et al. Deletion of hepatic Ctr1 reveals its function in copper acquisition and compensatory mechanisms for copper homeostasis[J]. American Journal of Physiology-Gastrointestinal and Liver Physiology,2009,296(2):356-364.
[6] Jomova K,Valko M. Advances in metal-induced oxidative stress and human disease[J]. Toxicology,2011,283(2/3):65-87.
[7] Kim B E,Nevitt T,Thiele D J. Mechanisms for copper acquisition,distribution and regulation[J]. Nature Chemical Biology,2008,4(3):176-185.
[8] Crisponi G,Nurchi V M,Fanni D,et al. Copper-related diseases:from chemistry to molecular pathology[J]. Coordination Chemistry Reviews,2010,254(7/8):876-889.
[9] Fry R S,Ashwell M S,Lloyd K E,et al. Amount and source of dietary copper affects small intestine morphology,duodenal lipid peroxidation,hepatic oxidative stress,and mRNA expression of hepatic copper regulatory proteins in weanling pigs[J]. Journal of Animal Science,2012,90(9):3112-3119.
[10] Huang Y L,Ashwell M S,Fry R S,et al. Effect of dietary copper amount and source on copper metabolism and oxidative stress of weanling pigs in short-term feeding[J]. Journal of Animal Science,2015,93(6):2948-2955.
[11] Ranganathan P N,Lu Y,Jiang L L,et al. Serum ceruloplasmin protein expression and activity increases in iron-deficient rats and is further enhanced by higher dietary copper intake[J]. Blood,2011,118(11):3146-3153.
[12] Hedemann M S,Jensen B B,Poulsen H D. Influence of dietary zinc and copper on digestive enzyme activity and intestinal morphology in weaned pigs[J]. Journal of Animal Science,2006,84(12):3310-3320.
[13] Kumar V,Kalita J,Bora H K,et al. Relationship of antioxidant and oxidative stress markers in different organs following copper toxicity in a rat model[J]. Toxicology and Applied Pharmacology,2016,293(2016):37-43.
[14] Ozcelik D,Ozaras R,Gurel Z,et al. Copper-mediated oxidative stress in rat liver[J]. Biological Trace Element Research,2003,96(1/2/3):209-215.
[15] Ozcelik D,Uzun H. Copper intoxication;antioxidant defenses and oxidative damage in rat brain[J]. Biological Trace Element Research,2009,127(1):45-52.
[16] Wu X Z,Zhang T T,Guo J G,et al. Copper bioavailability,blood parameters,and nutrient balance in mink[J]. Journal of Animal Science,2015,93(1):176-184.
[17] Southern L L,Adeola O,Lange C M D,et al. Nutrient requirments tables[M]//Whitacre P T. Nutrient Requirements of Swine. 11th ed. Washington,DC:The National Academies Press,2012:226.
[18] Reeves P G,Nielsen F H,Fahey G C,Jr. AIN-93 purified diets for laboratory rodents:final report of the American Institute of Nutrition Ad Hoc Writing Committee on the reformulation of the AIN-76A rodent diet[J]. The Journal of Nutrition,1993,123(11):1939-1951.
[19] Lin Z M,Ning H F,Bi J G,et al. Effects of nitrogen fertilization and genotype on rice grain macronutrients and micronutrients[J]. Rice Science,2014,21(4):233-242.
[20] Petta S,Gastaldelli A,Rebelos E,et al. Pathophysiology of non alcoholic fatty liver disease[J]. International Journal of Molecular Sciences,2016,17(12):2082.
[21] Albrechtsen N J W,Kuhre R E,Pedersen J,et al. The biology of glucagon and the consequences of hyperglucagonemia[J]. Biomarkers in Medicine,2016,10(11):1141-1151.
[22] Bugianesi E,Gastaldelli A,Vanni E,et al. Insulin resistance in non-diabetic patients with non-alcoholic fatty liver disease:sites and mechanisms[J]. Diabetologia,2005,48(4):634-642.
[23] Wang J G,Zhu X Y,Guo Y Z,et al. Influence of dietary copper on serum growth-related hormone levels and growth performance of weanling pigs[J]. Biol Trace Elem Res,2016,172(1):134-139.
[24] Muller T D,Nogueiras R,Andermann M L,et al. Ghrelin[J]. Molecular Metabolism,2015,4(6):437-460.
[25] Zhang F,Zheng W J,Guo R,et al. Effect of dietary copper level on the gut microbiota and its correlation with serum inflammatory cytokines in Sprague-Dawley rats[J]. Journal of Microbiology,2017,55(9):694-702.
[26] Turnlund J R,Jacob R A,Keen C L,et al. Long-term high copper intake:effects on indexes of copper status,antioxidant status,and immune function in young men[J]. The American Journal of Clinical Nutrition,2004,79(6):1037-1044.
[27] Sánchez D,Miguel M,Aleixandre A. Dietary fiber,gut peptides,and adipocytokines[J]. Journal of Medicinal Food,2012,15(3):223-230.
[28] Bailey J D,Ansotegui R P,Paterson J A,et al. Effects of supplementing combinations of inorganic and complexed copper on performance and liver mineral status of beef heifers consuming antagonists[J]. Journal of Animal Science,2001,79(11):2926-2934.
[29] Alexandrova A,Petrov L,Georgieva A,et al. Effect of copper intoxication on rat liver proteasome activity:relationship with oxidative stress[J]. Journal of Biochemical and Molecular Toxicology,2008,22(5):354-362.
[30] 张朝政,姚大伟,许莹,等. 载铜凹凸棒黏土对小鼠组织中Cu2+含量的影响[J]. 畜牧与兽医,2018,50(05):113-116. Zhang C Z,Yao D W,Xu Y,et al. Effect of Cu2+-modified palygorskite on Cu2+ contents in the tissues of mice[J]. Animal Husbandry & Veterinary Medicine,2018,50(5):113-116(in Chinese with English abstract).
[31] Linder M C,Hazegh-Azam M. Copper biochemistry and molecular biology[J]. The American Journal of Clinical Nutrition,1996,63(5):797-811.
[32] Wang L X,Yan S L,Li J Z,et al. Rapid Communication:the relationship of enterocyte proliferation with intestinal morphology and nutrient digestibility in weaning piglets[J]. Journal of Animal Science,2019,97(1):353-358.
[33] 田时祎,王珏,汪晶,等. 早期低聚半乳糖干预对哺乳仔猪回肠形态、功能发育相关基因及回肠菌群的影响[J]. 南京农业大学学报,2018,41(5):917-924.DOI:10.7685/jnau.201711031. Tian S Y,Wang J,Wang J,et al. The effect of early intervention with galacto-oligosaccharides on the morphological structure,functional development,and microbial community in ileum of suckling piglets[J]. Journal of Nanjing Agricultural University,2018,41(5):917-924(in Chinese with English abstract).
[34] Pereira T C,Campos M M,Bogo M R. Copper toxicology,oxidative stress and inflammation using zebrafish as experimental model[J]. Journal of Applied Toxicology,2016,36:876-885.
[35] Bhor V M,Raghuram N,Sivakami S. Oxidative damage and altered antioxidant enzyme activities in the small intestine of streptozotocin-induced diabetic rats[J]. The International Journal of Biochemistry & Cell Biology,2004,36(1):89-97.
[37] de Vries H E,Witte M,Hondius D,et al. Nrf2-induced antioxidant protection:a promising target to counteract ROS-mediated damage in neurodegenerative disease?[J]. Free Radical Biology and Medicine,2008,45(10):1375-1383.
[38] Fischer R,Maier O. Interrelation of oxidative stress and inflammation in neurodegenerative disease:role of TNF[J]. Oxidative Medicine and Cellular Longevity,2015,2015:1-18.
[39] Scheiber I F,Mercer J F B,Dringen R. Metabolism and functions of copper in brain[J]. Progress in Neurobiology,2014,116:33-57.
[40] Pirinccioglu A G,G?kalp D,Pirinccioglu M,et al. Malondialdehyde(MDA)and protein carbonyl(PCO)levels as biomarkers of oxidative stress in subjects with familial hypercholesterolemia[J]. Clinical Biochemistry,2010,43(15):1220-1224.
[41] Miao L,St Clair D K. Regulation of superoxide dismutase genes:implications in disease[J]. Free Radical Biology and Medicine,2009,47(4):344-356.
[42] Nose Y,Wood L K,Kim B E,et al. Ctr1 is an apical copper transporter in mammalian intestinal epithelial cells in vivo that is controlled at the level of protein stability[J]. Journal of Biological Chemistry,2010,285(42):32385-32392.
[43] Bauerly K A,Kelleher S L,L?nnerdal B. Effects of copper supplementation on copper absorption,tissue distribution,and copper transporter expression in an infant rat model[J]. American Journal of Physiology-Gastrointestinal and Liver Physiology,2005,288(5):1007-1014.

相似文献/References:

[1]刘家国,赵洪进,刘艳娟,等.富硒麦芽对二乙基亚硝胺所致大鼠肝癌、伴癌综合征及血糖调节相关激素的影响[J].南京农业大学学报,2005,28(4):90.[doi:10.7685/j.issn.1000-2030.2005.04.020]
[2]江善祥,毛鑫智.实验感染肝片吸虫对大鼠肝脏药物代谢功能的影响[J].南京农业大学学报,2003,26(4):82.[doi:10.7685/j.issn.1000-2030.2003.04.019]
 JIANG Shan-xiang,MAO Xin-zhi.Effects of experimental fascioliasis on the drug-metabolizing function in rat liver[J].Journal of Nanjing Agricultural University,2003,26(4):82.[doi:10.7685/j.issn.1000-2030.2003.04.019]
[3]王艳玲,韩正康.半胱胺对妊娠大鼠乳腺发育及血液生长抑素生长激素含量的影响[J].南京农业大学学报,1998,21(1):87.[doi:10.7685/j.issn.1000-2030.1998.01.017]
 Wang Yanling,Han Zhengkang.Effects of cysteamine on mammary gland development and blood levels of somatostatin and growth hormone in pregnant rats[J].Journal of Nanjing Agricultural University,1998,21(4):87.[doi:10.7685/j.issn.1000-2030.1998.01.017]
[4]谈寅飞,陈伟华,邹思湘.β-酪啡肽对鼠血浆胃泌素水平的影响[J].南京农业大学学报,2001,24(4):63.[doi:10.7685/j.issn.1000-2030.2001.04.015]
 Tan Yinfei,Chen Weihua,Zou Sixiang.The effect of β-casomorphin on gastrin level in murine serum[J].Journal of Nanjing Agricultural University,2001,24(4):63.[doi:10.7685/j.issn.1000-2030.2001.04.015]
[5]王育伟,吴文达,施志玉,等.脱氧雪腐镰刀菌烯醇对大鼠胃液组成的影响[J].南京农业大学学报,2017,40(2):320.[doi:10.7685/jnau.201601015]
 WANG Yuwei,WU Wenda,SHI Zhiyu,et al.Effects of deoxynivalenol on the composition of gastric juice in rats[J].Journal of Nanjing Agricultural University,2017,40(4):320.[doi:10.7685/jnau.201601015]
[6]杨春,李惠芳,杨树,等.母鼠妊娠期和哺乳期日粮添加甜菜碱对子代雌性大鼠机体铁代谢的影响及其机制[J].南京农业大学学报,2018,41(6):1100.[doi:10.7685/jnau.201711039]
 YANG Chun,LI Huifang,YANG Shu,et al.Effects of maternal betaine supplementation during gestagation and lactation on iron metablism in female offsprings of rats and its mechanism[J].Journal of Nanjing Agricultural University,2018,41(4):1100.[doi:10.7685/jnau.201711039]
[7]孙晓轲,储稳,徐立新,等.旋毛虫反式-2-烯酰辅酶A还原酶1对大鼠免疫功能的影响[J].南京农业大学学报,2020,43(1):116.[doi:10.7685/jnau.201901028]
 SUN Xiaoke,CHU Wen,XU Lixin,et al.Effects of Trichinella spiralis trans-2-enoyl coenzyme A reductase 1 on immune functions of rat[J].Journal of Nanjing Agricultural University,2020,43(4):116.[doi:10.7685/jnau.201901028]

备注/Memo

备注/Memo:
收稿日期:2019-07-17。
基金项目:国家自然科学基金项目(31372321);江苏现代农业(生猪)产业技术体系营养调控岗位项目[SXGC(2019)430]
作者简介:张峰,博士。
通信作者:姚文,教授,博士,主要从事单胃动物营养研究,E-mail:yaowen67jp@njau.edu.cn。
更新日期/Last Update: 1900-01-01