[1]陈亚然,操然,张瑶瑶,等.β4GalT1基因点突变为GalNAcT对小鼠生理功能的影响[J].南京农业大学学报,2020,43(4):762-769.[doi:10.7685/jnau.201909027]
 CHEN Yaran,CAO Ran,ZHANG Yaoyao,et al.Effect of point mutation of β4GalT1 gene to GalNAcT on physiological function of mice[J].Journal of Nanjing Agricultural University,2020,43(4):762-769.[doi:10.7685/jnau.201909027]
点击复制

β4GalT1基因点突变为GalNAcT对小鼠生理功能的影响()
分享到:

《南京农业大学学报》[ISSN:1000-2030/CN:32-1148/S]

卷:
43卷
期数:
2020年4期
页码:
762-769
栏目:
食品与工程
出版日期:
2020-07-13

文章信息/Info

Title:
Effect of point mutation of β4GalT1 gene to GalNAcT on physiological function of mice
作者:
陈亚然 操然 张瑶瑶 Voglmeir JOSEF 刘丽
南京农业大学食品科学技术学院, 江苏 南京 210095
Author(s):
CHEN Yaran CAO Ran ZHANG Yaoyao Voglmeir JOSEF LIU Li
College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
关键词:
小鼠β4GalT1点突变生理功能
Keywords:
mouseβ4GalT1point mutationphysiological function
分类号:
TS201.2
DOI:
10.7685/jnau.201909027
摘要:
[目的] 本文旨在研究β-1,4-半乳糖基转移酶1基因(β4GalT1)突变为N-乙酰氨基半乳糖转移酶基因(GalNAcT)对小鼠生理功能的影响。[方法]β4GalT1基因点突变的纯合子、杂合子和野生型小鼠为研究对象,观察、测定和记录小鼠的日常状态与繁殖情况,并采用单因素方差分析和多重比较对数据进行差异显著性分析,研究β4GalT1基因点突变为GalNAcT基因对小鼠生长发育、神经系统发育和雌小鼠繁殖能力的影响。以纯合子和野生型小鼠为研究对象,探讨β4GalT1基因点突变对小鼠肝脏中蛋白质糖基化的影响。[结果] 通过对比不同周龄的纯合子和野生型小鼠的体质量和成年小鼠的主要器官质量,发现β4GalT1基因点突变对小鼠体质量和主要器官质量均无显著影响。通过对纯合子和野生型小鼠肝脏中N-链寡糖的比较可知,β4GalT1基因点突变改变了小鼠肝脏中N-链寡糖的结构。观察纯合子和野生型小鼠日常状态发现,纯合子小鼠比野生型小鼠反应迟滞,对外界刺激反应不敏感。通过悬尾试验,发现纯合子小鼠的静止时间极显著长于野生型小鼠(P<0.01)。对3种基因型小鼠进行亲本自交,发现纯合子雌小鼠受孕困难,或者受孕以后不能正常分娩,雌小鼠和子代小鼠均死亡。对比杂合子和野生型小鼠自交后代,纯合子小鼠平均每胎子代小鼠的数量极显著少于杂合子和野生型小鼠(P<0.01)。[结论] β4GalT1基因点突变改变了小鼠体内蛋白质糖基化修饰,且纯合子小鼠体内蛋白质N-糖基化的改变必将改变小鼠的生理机能。说明β4GalT1对小鼠生长发育、神经系统发育和雌小鼠繁殖能力等有重要的、不可替代的作用。
Abstract:
[Objectives] The purpose of this article was to study the influence of β-1,4-galactosyltransferase 1 gene(β4GalT1) mutation to N-acetylgalactosyltransferase gene(GalNAcT) on the physiological function of mice.[Methods] β4GalT1 mutations of homozygous and heterozygous and wild type mice were used as the research object,the daily status in mice and breeding were observed,measured and recorded,and the single factor analysis of variance and multiple comparisons to significant differences were selected in data analysis in order to study the effect of β4GalT1 gene mutation to GalNAcT on the growth and development,nervous system development of mice and the reproductive capacity of female mice. β4GalT1 mutations of homozygous and wild type mice were used as the research object,the effects of point mutation of β4GalT1 gene on protein glycosylation in liver of mice were studied.[Results] By comparing the body mass of homozygous and wild-type mice of different weeks and the main organ mass of adult mice,it was found that the point mutation of β4GalT1 gene had no significant effect on the body mass and main organ mass of mice. By comparing the N-glycans in the liver of homozygous and wild-type mice,we could know that the point mutation of the β4GalT1 gene had an important effect on the glycosylation of proteins in mice. By observing the daily state of homozygous and wild-type mice,it was found that the response of homozygous mice was sluggish and insensitive to external stimulation compared with wild-type mice. The resting time of homozygous mice was significantly longer than that of wild-type mice(P<0.01). Parental self-cross was performed in three genotypes of mice,and it was found that homozygous female mice were difficult to conceive,or they couldn’t give birth normally after conception as both mother and offspring mice died. The average number of homozygous mice per offspring was significantly less than that of heterozygous and wild-type mice compared with the inbred offspring of heterozygous and wild-type mice(P<0.01).[Conclusions] Point mutation of the β4GalT1 gene altered glycosylation modification of protein in mice,and the change of N-glycosylation of proteins in homozygous mice would inevitably change the physiological function of mice. It was suggested that β4GalT1 was important and irreplaceable for the growth and development,nervous system development of mice and the reproductive capacity of female mice.

参考文献/References:

[1] Crocker P R,Feizi T. Carbohydrate recognition systems:functional triads in cell:cell interactions[J]. Current Opinion in Structural Biology,1996,6(5):679-691.
[2] Poirier F,Kimber S. Cell surface carbohydrates and lectins in early development[J]. Molecular Human Reproduction,1997,3(10):907-918.
[3] Collins B E,Paulson J C. Cell surface biology mediated by low affinity multivalent protein-glycan interactions[J]. Current Opinion in Chemical Biology,2004,8(6):617-625.
[4] Lowe J B. Glycan-dependent leukocyte adhesion and recruitment in inflammation[J]. Current Opinion in Cell Biology,2003,15(5):531-538.
[5] Talbot P,Shur B D,Myles D G. Cell adhesion and fertilization:steps in oocyte transport,sperm-zona pellucida interactions,and sperm-egg fusion[J]. Biology of Reproduction,2003,68(1):1-9.
[6] Akama T O,Nakagawa H,Sugihara K,et al. Germ cell survival through carbohydrate-mediated interaction with Sertoli cells[J]. Science,2002,295(5552):124-127.
[7] Sharon N. Carbohydrate:lectin interactions in infectious disease[M]//Toward Anti-Adhesion Therapy for Microbial Diseases. Boston,MA:Springer,1996:1-8.
[8] Sacks D,Kamhawi S. Molecular aspects of parasite-vector and vector-host interactions in leishmaniasis[J]. Annual Review of Microbiology,2001,55(1):453-483.
[9] Sharon N,Ofek I. Fighting infectious diseases with inhibitors of microbial adhesion to host tissues[J]. Critical Reviews in Food Science and Nutrition,2002,42(S3):267-272.
[10] Rudd P M,Wormald M R,Dwek R A. Glycosylation and the immune system[J]. Science,2001,291(5512):2370-2376.
[11] Lo N W,Shaper J H,Pevsner J,et al. The expanding beta 4-galactosyltransferase gene family:messages from the databanks[J]. Glycobiology,1998,8(5):517-526.
[12] Roseman S. Reflections on glycobiology[J]. The Journal of Biological Chemistry,2001,276(45):41527-41542.
[13] Asano M,Furukawa K,Kido M,et al. Growth retardation and early death of beta-1,4-galactosyltransferase knockout mice with augmented proliferation and abnormal differentiation of epithelial cells[J]. The EMBO Journal,1997,16(8):1850-1857.
[14] Kido M,Asano M,Iwakura Y,et al. Presence of polysialic acid and HNK-1 carbohydrate on brain glycoproteins from beta-1,4-galactosyltransferase-knockout mice[J]. Biochemical and Biophysical Research Communications,1998,245(3):860-864.
[15] Lu Q,Hasty P,Shur B D. Targeted mutation in β1,4-galactosyltransferase leads to pituitary insufficiency and neonatal lethality[J]. Developmental Biology,1997,181(2):257-267.
[16] Ramakrishnan B,Qasba P K. UDP-Gal:BetaGlcNAc beta 1,4-galactosyltransferase,polypeptide 1(B4GALT1)[M]//Taniguchi N,Honke K,Fukuda M,et al. Handbook of Glycosyltransferases and Related Genes. Tokyo:Springer,2014:51-62.
[17] Rodeheffer C,Shur B D. Characterization of a novel ZP3-independent sperm-binding ligand that facilitates sperm adhesion to the egg coat[J]. Development,2004,131(3):503-512.
[18] Chen L,Xie Y,Fan J,et al. HCG induces β1,4-GalT I expression and promotes embryo implantation[J]. Int J Clin Exp Pathol,2015,8(5):4673-4683.
[19] Gu J,Fan J,Xu Y,et al. Regulatory function of β1,4-galactosyltransferase I expression on Lewis-Y glycan and embryo implantation[J]. Gene,2015,562:220-225.
[20] Huang Q,Shur B D,Begovac P C. Overexpressing cell surface beta 1,4-galactosyltransferase in PC12 cells increases neurite outgrowth on laminin[J]. Journal of Cell Science,1995,108:839-847.
[21] Shen A,Yan J,Ding F,et al. Overexpression of β-1,4-galactosyltransferase I in rat Schwann cells promotes the growth of co-cultured dorsal root Ganglia[J]. Neuroscience Letters,2003,342:159-162.
[22] Shen A,Zhu D,Ding F,et al. Increased gene expression of β-1,4-galactosyltransferase I in rat injured sciatic nerve[J]. Journal of Molecular Neuroscience,2003,21:103-110.
[23] Asano M,Nakae S,Kotani N,et al. Impaired selectin-ligand biosynthesis and reduced inflammatory responses in β-1,4-galactosyltransferase-I-deficient mice[J]. Blood,2003,102:1678-1685.
[24] Ivanov Y D,Bukharina N S,Pleshakova T O,et al. Atomic force microscopy visualization and measurement of the activity and physicochemical properties of single monomeric and oligomeric enzymes[J]. Biophysics,2011,56(5):892-896.
[25] 李婷. 肝脏功能的检测方法分类及研究现状[J]. 肝脏,2019,24(8):952-955. Li T. Classification and research status of detection methods for liver function[J]. Chinese Hepatology,2019,24(8):952-955(in Chinese).
[26] 李淑芬,李希. β1,4半乳糖基转移酶的生物学功能研究进展[J]. 生命的化学,2016,36(5):589-595. Li S F,Li X. Recent advance in the function of β1,4 galactosyltransferase[J]. Chemistry of Life,2016,36(5):589-595(in Chinese with English abstract).
[27] Begovac P C,Hall D E,Shur B D. Laminin fragment E8 mediates PC12 cell neurite outgrowth by binding to cell surface beta 1,4 galactosyltransferase[J]. The Journal of Cell Biology,1991,113(3):637-644.

相似文献/References:

[1]徐璐,王根林.小鼠可溶性腺苷酸环化酶基因的表达特性[J].南京农业大学学报,2008,31(1):149.[doi:10.7685/j.issn.1000-2030.2008.01.031]
 XU Lu,WANG Gen-lin.Expression characteristics of mouse soluble adenylyl cyclase[J].Journal of Nanjing Agricultural University,2008,31(4):149.[doi:10.7685/j.issn.1000-2030.2008.01.031]
[2]邵根宝,高爱民,徐银学,等.小鼠植入前胚胎MuERV-L基因表达特征研究[J].南京农业大学学报,2007,30(4):87.[doi:10.7685/j.issn.1000-2030.2007.04.019]
 SHAO Gen-bao,GAO Ai-min,XU Yin-xue,et al.Expression of MuERV-L mRNA in the preimplantation mouse development[J].Journal of Nanjing Agricultural University,2007,30(4):87.[doi:10.7685/j.issn.1000-2030.2007.04.019]
[3]左伟勇,陈伟华,邹思湘.伴大豆球蛋白胃蛋白酶水解肽对小鼠免疫功能及肠道内环境的影响[J].南京农业大学学报,2005,28(3):71.[doi:10.7685/j.issn.1000-2030.2005.03.016]
[4]张利生,牛树理.自然发情和超排小鼠有腔卵泡发育的动态模式比较[J].南京农业大学学报,2001,24(3):53.[doi:10.7685/j.issn.1000-2030.2001.03.013]
 Zhang Lisheng,Niu Shuli.Comparison in dynamic patterns of ovarian antral follicles between natural and superovulated estrous rats[J].Journal of Nanjing Agricultural University,2001,24(4):53.[doi:10.7685/j.issn.1000-2030.2001.03.013]
[5]刘红林,范必勤,陈宜峰,等.小鼠卵母细胞的乙醇激活[J].南京农业大学学报,1996,19(4):56.[doi:10.7685/j.issn.1000-2030.1996.04.012]
 Liu Honglin,Fan Biqin,Chen Yifeng,et al.PARTHENOGENETIC ACTIVATION OF MOUSE OOCYTES IN VITRO WITH ETHANOL[J].Journal of Nanjing Agricultural University,1996,19(4):56.[doi:10.7685/j.issn.1000-2030.1996.04.012]
[6]张荣庆,韩正康.异黄酮植物雌激素对小鼠免疫功能的影响[J].南京农业大学学报,1993,16(2):64.[doi:10.7685/j.issn.1000-2030.1993.02.013]
 Zhang Rongqing Han Zhengkang.EFFECTS OF ISOFLAVON IC PHYTOESTROGEN ON IMMUNE FUNCTION IN MICE[J].Journal of Nanjing Agricultural University,1993,16(4):64.[doi:10.7685/j.issn.1000-2030.1993.02.013]
[7]闫益波,齐巍巍,钟部帅,等.小鼠胚胎干细胞单层定向诱导分化为肝样细胞的研究[J].南京农业大学学报,2011,34(5):86.[doi:10.7685/j.issn.1000-2030.2011.05.016]
 YAN Yi-bo,QI Wei-wei,ZHONG Bu-shuai,et al.In vitro differentiation of mouse embryonic stem cells into functional hepatocytes with an adherent culture system[J].Journal of Nanjing Agricultural University,2011,34(4):86.[doi:10.7685/j.issn.1000-2030.2011.05.016]
[8]杜学海,曹蕊,萧鹏,等.不同处理小鼠卵巢组织中HIF1α基因的表达分析及其真核表达载体构建[J].南京农业大学学报,2014,37(6):137.[doi:10.7685/j.issn.1000-2030.2014.06.020]
 DU Xuehai,CAO Rui,XIAO Peng,et al.Expression level of HIF1α gene in the different treated mouse ovaries and construction of eukaryotic expression vector of HIF1α[J].Journal of Nanjing Agricultural University,2014,37(4):137.[doi:10.7685/j.issn.1000-2030.2014.06.020]
[9]朱庆丰,任雪平.D-半乳糖对小鼠初级感觉皮层M1受体表达的影响[J].南京农业大学学报,2015,38(3):478.[doi:10.7685/j.issn.1000-2030.2015.03.019]
 ZHU Qingfeng,REN Xueping.Effects of D-galactose on M1 receptor expressions in the primary sensory cortex of mice[J].Journal of Nanjing Agricultural University,2015,38(4):478.[doi:10.7685/j.issn.1000-2030.2015.03.019]
[10]孟玲玲,班晓敏,张皓博,等.烟曲霉震颤素C对小鼠的急性和亚慢性毒性试验[J].南京农业大学学报,2015,38(6):998.[doi:10.7685/j.issn.1000-2030.2015.06.019]
 MENG Lingling,BAN Xiaomin,ZHANG Haobo,et al.Study on acute and aubchronic toxicities of fumitremorgin C in mice[J].Journal of Nanjing Agricultural University,2015,38(4):998.[doi:10.7685/j.issn.1000-2030.2015.06.019]

备注/Memo

备注/Memo:
收稿日期:2019-09-17。
基金项目:国家重点研发计划重点项目(2017YFD0400600)
作者简介:陈亚然,硕士研究生。
通信作者:刘丽,研究员,博导,主要从事食品营养糖组学与糖生物工程研究,E-mail:liuli@njau.edu.cn。
更新日期/Last Update: 1900-01-01