[1]王迎旭,孙晔,李玉花,等.基于叶绿素荧光成像的温室黄瓜植株病害分类与病情监测[J].南京农业大学学报,2020,43(4):770-780.[doi:10.7685/jnau.201910029]
 WANG Yingxu,SUN Ye,LI Yuhua,et al.Classification and monitoring of disease cucumber plants in greenhouse based on chlorophyll fluorescence imaging technology[J].Journal of Nanjing Agricultural University,2020,43(4):770-780.[doi:10.7685/jnau.201910029]
点击复制

基于叶绿素荧光成像的温室黄瓜植株病害分类与病情监测()
分享到:

《南京农业大学学报》[ISSN:1000-2030/CN:32-1148/S]

卷:
43卷
期数:
2020年4期
页码:
770-780
栏目:
食品与工程
出版日期:
2020-07-13

文章信息/Info

Title:
Classification and monitoring of disease cucumber plants in greenhouse based on chlorophyll fluorescence imaging technology
作者:
王迎旭 孙晔 李玉花 孙国祥 汪小旵
南京农业大学工学院/江苏省现代设施农业技术与装备工程实验室, 江苏 南京 210031
Author(s):
WANG Yingxu SUN Ye LI Yuhua SUN Guoxiang WANG Xiaochan
College of Engineering/Engineering Laboratory of Modern Facility Agriculture Technology and Equipment in Jiangsu Province, Nanjing Agricultural University, Nanjing 210031, China
关键词:
叶绿素荧光黄瓜病害分类病情监测支持向量机(SVM)极端梯度提升(XGBoost)
Keywords:
chlorophyll fluorescencecucumberclassification of diseasesdisease severity predictionsupport vector machine(SVM)extreme gradient boosting(XGBoost)
分类号:
S435.5
DOI:
10.7685/jnau.201910029
摘要:
[目的] 针对黄瓜植株极易染病且部分病害症状相似的问题,利用叶绿素荧光成像系统研究黄瓜植株不同病害区分及早期病害监测的可行性。[方法] 采用叶绿素荧光成像系统采集全植株冠层图像,以褐斑病和炭疽病胁迫下的黄瓜植株为试验材料,分析植株生理状态,建立基于叶绿素荧光参数的病害分类和病情诊断模型。首先通过图像的分割得到病斑区域;然后采集植株氮含量、叶绿素含量与荧光参数,并分析其变化趋势;最后基于叶绿素荧光强度和动力学参数对黄瓜褐斑病和炭疽病进行分类和早期监测,分别采用支持向量机(SVM)算法和极端梯度提升(XGBoost)算法对不同程度病害植株进行分类。[结果] 与对照植株相比,染病植株叶绿素含量及氮含量呈逐渐下降趋势,最大光化学量子产量(Fv/Fm)、实际光化学效率(ΦPSⅡ)降低,非光化学淬灭(NPQ)、非光化学淬灭系数(qN)和光化学淬灭系数(qP)上升。对于植株的病害与病情分类,利用XGBoost算法进行分类的结果整体较好。对2种病害单独分类的准确率达到90%以上,对2种病害同时分类准确率达到85%以上,对病情和病害种类同时监测的准确率接近80%。[结论] 基于叶绿素荧光成像系统监测黄瓜病情和区分其病害种类是可行的,具有良好的应用前景。
Abstract:
[Objectives] Cucumber plants are highly susceptible to disease and some of the disease symptoms are similar,the feasibility of using chlorophyll fluorescence imaging system to distinguish and detect different diseases of cucumber plants was studied in this experiment.[Methods] Cucumber plants under the stress of brown patch and anthracnose were used as experimental materials to design a chlorophyll fluorescence imaging system that could collect canopy images of the whole plant,and the physiological status of the plants were analyzed to establish a diagnostic model based on chlorophyll fluorescence parameters. Firstly,the disease spots were obtained by image segmentation. Secondly,nitrogen content,chlorophyll content and fluorescence parameters of plants were collected,and the variation trend was analyzed in this experiment. Finally,based on chlorophyll fluorescence intensity and kinetic parameters,early detection of cucumber brown spot was conducted,and support vector machine(SVM) algorithm and extreme gradient boosting(XGBoost) algorithm were adopted respectively to classify disease plants of different degrees and detect early diseases.[Results] Compared with the plants in control group,the chlorophyll content and nitrogen content of infected plants decreased gradually,maximum photochemical quantum yield(Fv/Fm) and actual photochemical efficiency(ΦPSⅡ) of infected plants reduced,while the non-photochemical quenching(NPQ),non-photochemical quenching coefficient(qN) and photochemical quenching coefficient(qP) increased. And the results showed that the XGBoost algorithm for the classification of plant diseases and the study of disease severity prediction were better overall. The accuracy rate for the classification between control group and a single disease plants reached 90%,and the accuracy rate for the classification among control group and two kinds of disease plant reached 85%. The accuracy rate for the classification among disease severity prediction,two kinds of disease and control group reached nearly 80%.[Conclusions] It is feasible to use the chlorophyll fluorescence imaging system designed in this study to monitor the disease of cucumber and to distinguish the disease species,with a good prospect for development.

参考文献/References:

[1] 吴桥. 黄瓜褐斑病菌(Corynespora cassiicola)生物学特性、遗传多样性及防治基础研究[D]. 沈阳:沈阳农业大学,2017. Wu Q. The biological properties,genetic diversity and fundermental control of Corynespora cassiicola from cucumber brown spot[D]. Shenyang:Shenyang Agricultural University,2017(in Chinses with English abstract).
[2] 张凌云. 大棚黄瓜栽培常见病害问题与防治研究[J]. 农业与技术,2018,38(20):100. Zhang L Y. Research on the problems and prevention of common diseases of cucumber cultivation in greenhouses[J]. Agriculture and Technology,2018,38(20):100(in Chinses with English abstract).
[3] 吴宝忠,任振辉,王娟. 基于手机APP的温室大棚温湿度自动控制系统设计[J]. 中国农机化学报,2018,39(4):68-71. Wu B Z,Ren Z H,Wang J. Design of automatic control system for temperature and humidity in greenhouse based on mobile phone APP[J]. Journal of Chinese Agricultural Mechanization,2018,39(4):68-71(in Chinses with English abstract).
[4] 张宁,谭亲跃,张戈风. 温室地上环境因子模型研究综述[J]. 中国农学通报,2019,35(2):93-99. Zhang N,Tan Q Y,Zhang G F. Ground environment factor model in greenhouse:a review[J]. Chinese Agricultural Science Bulletin,2019,35(2):93-99(in Chinses with English abstract).
[5] 杜玉红,孙文新. 基于计算机视觉技术的玉米叶绿素含量检测研究[J]. 农机化研究,2017,39(8):199-201. Du Y H,Sun W X. Maize chlorophyll content detection based on computer vision technology[J]. Journal of Agricultural Mechanization Research,2017,39(8):199-201(in Chinses with English abstract).
[6] 刘恩泽,吴文福. 基于机器视觉的农作物表面多特征决策融合病变判断算法[J]. 吉林大学学报(工学版),2018,48(6):1873-1878. Liu E Z,Wu W F. Agricultural surface multiple feature decision fusion disease judgment algorithm based on machine[J]. Journal of Jilin University(Engineering and Technology Edition),2018,48(6):1873-1878(in Chinses with English abstract).
[7] 马浚诚,杜克明,郑飞翔,等. 基于卷积神经网络的温室黄瓜病害识别系统[J]. 农业工程学报,2018,34(12):186-192. Ma J C,Du K M,Zheng F X,et al. Disease recognition system for greenhouse cucumbers based on deep convolutional neural network[J]. Transactions of the Chinese Society of Agricultural Engineering,2018,34(12):186-192(in Chinses with English abstract).
[8] 朱文静,李林,李美清,等. 红外热成像与近红外光谱结合快速检测潜育期番茄花叶病[J]. 光谱学与光谱分析,2018,38(9):2757-2762. Zhu W J,Li L,Li M Q,et al. Rapid detection of tomato mosaic disease in incubation period by infrared thermal imaging and near infrared spectroscopy[J]. Spectroscopy and Spectral Analysis,2018,38(9):2757-2762(in Chinses with English abstract).
[9] 丁永军,李民赞,孙红,等. 基于多光谱图像技术的番茄营养素诊断模型[J]. 农业工程学报,2012,28(8):175-180. Ding Y J,Li M Z,Sun H,et al. Diagnosis model of tomato nutrient content based on multispectral images[J]. Transactions of the Chinese Society of Agricultural Engineering,2012,28(8):175-180(in Chinses with English abstract).
[10] 张爱武,张泰配,康孝岩,等. 高光谱成像分析植物叶片滞尘前后光谱特征变化[J]. 农业工程学报,2018,34(19):170-176. Zhang A W,Zhang T P,Kang X Y,et al. Changes of spectral characteristics of plant leaves before and after dust-retention under hyperspectral imaging[J]. Transactions of the Chinese Society of Agricultural Engineering,2018,34(19):170-176(in Chinses with English abstract).
[11] 谢亚平,陈丰农,张竞成,等. 基于高光谱技术的农作物常见病害监测研究[J]. 光谱学与光谱分析,2018,38(7):2233-2240. Xie Y P,Chen F N,Zhang J C,et al. Study on monitoring of common diseases of crops based on hyperspectral technology[J]. Spectroscopy and Spectral Analysis,2018,38(7):2233-2240(in Chinses with English abstract).
[12] 许凯雯. 基于高光谱成像技术的大麦真菌病害早期检测的研究[D]. 杭州:浙江大学,2018. Xu K W. Study of the early detection of fungal disease of barley seedlings based on hyperspectral imaging technology[D]. Hangzhou:Zhejiang University,2018(in Chinses with English abstract).
[13] 朱文静,毛罕平,李青林,等. 偏振-高光谱多维光信息的番茄叶片营养诊断[J]. 光谱学与光谱分析,2014,34(9):2500-2505. Zhu W J,Mao H P,Li Q L,et al. Study on the polarized reflectance-hyperspectral information fusion technology of tomato leaves nutrient diagnoses[J]. Spectroscopy and Spectral Analysis,2014,34(9):2500-2505(in Chinses with English abstract).
[14] Krause G H,Weis E. Chlorophyll fluorescence as a tool in plant physiology:Ⅱ. Interpretation of fluorescence signals[J]. Photosynthesis Research,1984,5(2):139-157.
[15] Krause G H,Weis E. Chlorophyll fluorescence and photosynthesis:the basics[J]. Annual Review of Plant Physiology,1991,42(42):313-349.
[16] Sharma D K,Fernández J O,Rosenqvist E,et al. Genotypic response of detached leaves versus intact plants for chlorophyll fluorescence parameters under high temperature stress in wheat[J]. Journal of Plant Physiology,2014,171(8):576-586.
[17] Baker R N. Applications of chlorophyll fluorescence can improve crop production strategies:an examination of future possibilities[J]. J Exp Bot,2004,55(403):1607-1621.
[18] Sch?chtl J,Huber G,Maidl F X,et al. Laser-induced chlorophyll fluorescence measurements for detecting the nitrogen status of wheat(Triticum aestivum L.)canopies[J]. Precision Agriculture,2005,6(2):143-156.
[19] 陈兵,王克如,李少昆,等. 病害胁迫对棉叶光谱反射率和叶绿素荧光特性的影响[J]. 农业工程学报,2011,27(9):86-93. Chen B,Wang K R,Li S K,et al. The effects of disease stress on spectra reflectance and chlorophyll fluorescence characteristics of cotton leaves[J]. Transactions of the Chinese Society of Agricultural Engineering,2011,27(9):86-93(in Chinses with English abstract).
[20] Bürling K,Hunsche M,Noga G. Use of blue-green and chlorophyll fluorescence measurements for differentiation between nitrogen deficiency and pathogen infection in winter wheat[J]. Journal of Plant Physiology,2011,168(14):1641-1648.
[21] Chiu Y,Hsu W,Chang Y. Detecting cabbage seedling diseases by using chlorophyll fluorescence[J]. Engineering in Agriculture,Environment and Food,2015,8(2):95-100.
[22] Lei R,Jiang H,Hu F,et al. Chlorophyll fluorescence lifetime imaging provides new insight into the chlorosis induced by plant virus infection[J]. Plant Cell Reports,2016,36(2):1-15.
[23] Tung J,Goodwin P H,Hsiang T. Chlorophyll fluorescence for quantification of fungal foliar infection and assessment of the effectiveness of an induced systemic resistance activator[J]. European Journal of Plant Pathology,2013,136(2):301-315.
[24] Cen H,Weng H,Yao J,et al. Chlorophyll fluorescence imaging uncovers photosynthetic fingerprint of Citrus huanglongbing[J]. Frontiers in Plant Science,2017,8:1509.
[25] 隋媛媛,王庆钰,于海业. 基于叶绿素荧光光谱指数的温室黄瓜病害预测[J]. 光谱学与光谱分析,2016,36(6):1779-1782. Sui Y Y,Wang Q Y,Yu H Y. Prediction of greenhouse cucumber disease based on chlorophyll fluorescence spectrum index[J]. Spectroscopy and Spectral Analysis,2016,36(6):1779-1782(in Chinses with English abstract).
[26] 鲁淑霞,蔡莲香,张罗幻. 基于零阶减小方差方法的鲁棒支持向量机[J]. 计算机科学,2019,46(11):193-201 Lu S X,Cai L X,Zhang L H. Robust SVM based on zeroth order variance reduction[J]. Computer Science,2019,46(11):193-201(in Chinses with English abstract).
[27] 王青松,谢兴生,佘颢. 基于CNN-XGBoost混合模型的短时交通流预测[J]. 测控技术,2019,38(4):37-40,67. Wang Q S,Xie X S,She H. Short-term traffic flow prediction based on CNN-XGBoost hybrid model[J]. Measurement & Control Technology,2019,38(4):37-40,67(in Chinses with English abstract).
[28] Shi X,Wong Y D,Li M Z,et al. A feature learning approach based on XGBoost for driving assessment and risk prediction[J]. Accident Analysis & Prevention,2019,129:170-179.

相似文献/References:

[1]薄凯亮,沈佳,钱春桃,等.‘ 北京截头’× 西双版纳黄瓜重组自交系群体重要农艺性状的遗传分析[J].南京农业大学学报,2011,34(3):20.[doi:10.7685/j.issn.1000-2030.2011.03.004]
 BO Kai-liang,SHEN Jia,QIAN Chun-tao,et al.Genetic analysis of the important agronomic traits on ‘Beijingjietou’× Xishuangbanna cucumber recombinant inbred lines[J].Journal of Nanjing Agricultural University,2011,34(4):20.[doi:10.7685/j.issn.1000-2030.2011.03.004]
[2]史建磊,娄群峰,钱春桃,等.黄瓜染色体片段导入系的构建与遗传评价[J].南京农业大学学报,2011,34(1):20.[doi:10.7685/j.issn.1000-2030.2011.01.004]
 SHI Jian-lei,LOU Qun-feng,QIAN Chun-tao,et al.Construction and genetic evaluation of chromosome segment introgression lines in cucumber[J].Journal of Nanjing Agricultural University,2011,34(4):20.[doi:10.7685/j.issn.1000-2030.2011.01.004]
[3]魏跃,陈啸寅,李振陆,等.黄瓜6磷酸葡萄糖酸脱氢酶基因cDNA片段的克隆及表达分析[J].南京农业大学学报,2010,33(1):37.[doi:10.7685/j.issn.1000-2030.2010.01.008]
 WEI Yue CHEN Xiao-yin,LI Zhen-lu,WANG Yong-ping,et al.Cloning of 6-phosphogluconate dehydrogenase gene cDNA fragments from cucumber and expression analysis[J].Journal of Nanjing Agricultural University,2010,33(4):37.[doi:10.7685/j.issn.1000-2030.2010.01.008]
[4]李为观,杨寅桂,魏跃,等.热胁迫下黄瓜幼苗生理生化指标变化及CSHSP70基因表达[J].南京农业大学学报,2010,33(3):47.[doi:10.7685/j.issn.1000-2030.2010.03.009]
 LI Wei-guan,YANG Yin-gui,WEI Yue,et al.Expression of CSHSP_{70} gene and changes of some physiological characters in cucumber seedlings during heat stress[J].Journal of Nanjing Agricultural University,2010,33(4):47.[doi:10.7685/j.issn.1000-2030.2010.03.009]
[5]娄丽娜,陈劲枫,钱春桃,等.利用胚培养诱导单性结实黄瓜果实形成单倍体植株的研究[J].南京农业大学学报,2009,32(2):30.[doi:10.7685/j.issn.1000-2030.2009.02.007]
 LOU Li-na,CHEN Jin-feng,QIAN Chun-tao,et al.Recovery of cucumber (Cucumis sativus L.)haploid plants through embryo culture in parthenocarpic cucumber fruits[J].Journal of Nanjing Agricultural University,2009,32(4):30.[doi:10.7685/j.issn.1000-2030.2009.02.007]
[6]耿贝贝,郭强,师慈,等.低浓度蔗糖对黄瓜下胚轴不定根发生有诱导作用[J].南京农业大学学报,2009,32(3):157.[doi:10.7685/j.issn.1000-2030.2009.03.029]
 GENG Bei-bei,GUO Qiang,SHI Ci,et al.Adventitious rooting of cucumbers(Cucumis sativus L.)induced by low concentration of sucrose[J].Journal of Nanjing Agricultural University,2009,32(4):157.[doi:10.7685/j.issn.1000-2030.2009.03.029]
[7]刁卫平,陈劲枫,雷春,等.影响黄瓜未授粉子房培养胚发生因素的研究[J].南京农业大学学报,2008,31(1):137.[doi:10.7685/j.issn.1000-2030.2008.01.028]
 DIAO Wei-ping,CHEN Jin-feng,LEI Chun,et al.Factors affecting embryo formation in unpollinated ovary culture of cucumber[J].Journal of Nanjing Agricultural University,2008,31(4):137.[doi:10.7685/j.issn.1000-2030.2008.01.028]
[8]张鹏,王飞,张列峰,等.黄瓜叶片生长期间内肽酶活性和同工酶变化及其生化特性[J].南京农业大学学报,2007,30(2):49.[doi:10.7685/j.issn.1000-2030.2007.02.010]
 ZHANG Peng,WANG Fei,ZHANG Lie-feng,et al.Study on endopeptidase isoenzymes and their characters in cucumber leaf development period[J].Journal of Nanjing Agricultural University,2007,30(4):49.[doi:10.7685/j.issn.1000-2030.2007.02.010]
[9]钱春桃,陈劲枫,罗向东.黄瓜抗枯萎病异源易位植株AT-04的鉴定筛选[J].南京农业大学学报,2006,29(2):20.[doi:10.7685/j.issn.1000-2030.2006.02.005]
 QIAN Chun-tao,CHEN Jin-feng,LUO Xiang-dong.Identification and characterization of cucumber alien translocation plant AT-04 with resistance to fusarium wilt[J].Journal of Nanjing Agricultural University,2006,29(4):20.[doi:10.7685/j.issn.1000-2030.2006.02.005]
[10]乔勇进,冯双庆,李丽萍,等.热处理对黄瓜贮藏冷害及内源多胺含量的影响[J].南京农业大学学报,2005,28(3):34.[doi:10.7685/j.issn.1000-2030.2005.03.008]

备注/Memo

备注/Memo:
收稿日期:2019-10-22。
基金项目:中国博士后科学基金项目(2018M642263);国家自然科学基金青年基金项目(61701242);江苏省自然科学基金项目(BK20150686,BK20170727)
作者简介:王迎旭,硕士研究生。
通信作者:汪小旵,教授,博导,主要从事农业生物环境模拟与控制研究,E-mail:wangxiaochan@njau.edu.cn。
更新日期/Last Update: 1900-01-01