[1]上官凌飞,王子诚,方项,等.DAM基因调控多年生果树芽休眠的机制[J].南京农业大学学报,2020,43(5):790-799.[doi:10.7685/jnau.201912069]
 SHANGGUAN Lingfei,WANG Zicheng,FANG Xiang,et al.Regulation mechanism of bud dormancy by DAM gene in perennial fruit trees[J].Journal of Nanjing Agricultural University,2020,43(5):790-799.[doi:10.7685/jnau.201912069]
点击复制

DAM基因调控多年生果树芽休眠的机制()
分享到:

《南京农业大学学报》[ISSN:1000-2030/CN:32-1148/S]

卷:
43卷
期数:
2020年5期
页码:
790-799
栏目:
综述
出版日期:
2020-09-15

文章信息/Info

Title:
Regulation mechanism of bud dormancy by DAM gene in perennial fruit trees
作者:
上官凌飞 王子诚 方项 陈春 刘天华 陈梦霞 房经贵
南京农业大学园艺学院/江苏省果树品种改良与种苗繁育工程中心, 江苏 南京 210095
Author(s):
SHANGGUAN Lingfei WANG Zicheng FANG Xiang CHEN Chun LIU Tianhua CHEN Mengxia FANG Jinggui
College of Horticulture/Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing Agricultural University, Nanjing 210095, China
关键词:
DAM基因多年生果树芽休眠调控机制
Keywords:
Dormancy-associated MADS-box(DAM) geneperennial fruit treebud dormancyregulation mechanism
分类号:
S663.1
DOI:
10.7685/jnau.201912069
摘要:
芽休眠是多年生果树抵御自然界不利环境,完成其生命周期的重要机制之一。芽休眠过程受到品种、光照、温度、酶、基因以及激素等因素的调控。近年来,关于芽休眠相关基因在芽休眠过程中的调控作用报道较多。其中,DAMDormancy-associated MADS-box)基因作为芽休眠调控核心基因备受关注。本文综合近年来国内、外研究进展,总结了多年生果树中DAM基因的鉴定结果,从DAM基因对果树芽生长的抑制作用,对FT类基因表达的抑制以及与植物激素之间相互调控3个方面概括了DAM基因调控果树芽休眠的机制,从转录因子调控、表观遗传调控、内含子区域调控、激素调控、温度调控以及光周期调控6个方面总结了影响DAM基因表达的因素,以期为深入研究DAM基因调控多年生果树芽休眠机制提供参考和借鉴。
Abstract:
Bud dormancy is one of the important mechanisms for perennial fruit trees resisting the unfavorable environment in nature and completing its life cycle. The process of bud dormancy is regulated by many factors such as variety,light,temperature,enzymes,genes,and hormones. In recent years,there have been many reports on the regulation of bud dormancy-related genes during bud dormancy. Among them,the DAM (Dormancy-associated MADS-box) gene has attracted much attention as a core gene for bud dormancy regulation. This article summarized the recent research progress at home and abroad,concluded the identification results of DAM gene in perennial fruit trees and revealed the regulatory mechanism of DAM gene from three aspects:the inhibition of DAM gene on fruit tree bud growth and FT-like gene expression,as well as the co-regulation between plant hormones and DAM gene. Then we summed up the regulation mechanism of DAM gene in fruit tree bud dormancy,including regulations related to transcription factor,epigenetic,intron region,hormone,temperature,and photoperiod,to provide reference and theoretical basis for further study on dormancy regulation mechanism of DAM gene in perennial fruit tree buds.

参考文献/References:

[1] 付立中,申海林,邹利人,等. 落叶果树自然休眠研究进展[J]. 北方果树,2014(4):1-3. Fu L Z,Shen H L,Zou L R,et al. Research progress on natural dormancy of deciduous fruit trees[J]. Northern Fruits,2014(4):1-3(in Chinese with English abstract).
[2] Samish R M. Dormancy in woody plants[J]. Annual Review of Plant Physiology,1954,5(1):183-204.
[3] Lang G A,Early J D,Martin G C,et al. Endo-,para-,and ecodormancy:physiological terminology and classification for dormancy research[J]. Horticultural Science,1987,22:371-377.
[4] 王力荣,朱更瑞,方伟超,等. 桃品种需冷量评价模式的探讨[J]. 园艺学报,2003,30(4):379-383. Wang L R,Zhu G R,Fang W C,et al. Estimating models of the chilling requirement for peach[J]. Acta Horticulturae Sinica,2003,30(4):379-383(in Chinese with English abstract).
[5] Jian L C,Li P H,Sun L H,et al. Alterations in ultrastructure and subcellular localization of Ca2+ in poplar apical bud cells during the induction of dormancy[J]. Journal of Experimental Botany,1997,48(6):1195-1207.
[6] Rohde A,Bhalerao R P. Plant dormancy in the perennial context[J]. Trends in Plant Science,2007,12(5):217-223.
[7] Welling A,Palva E T. Molecular control of cold acclimation in trees[J]. Physiologia Plantarum,2006,127(2):167-181.
[8] Le Mière P,Hadley P,Darby J,et al. The effect of temperature and photoperiod on the rate of flower initiation and the onset of dormancy in the strawberry(Fragaria×ananassa Duch.)[J]. Journal of Horticultural Science,1996,71(3):361-371.
[9] Olsen J E,Junttila O,Moritz T. A localised decrease of GA1 in shoot tips of Salix pentandra seedings precedes cessation of shoot elongation under short photoperiod[J]. Physiologia Plantarum,1995,95(4):627-632.
[10] Gibson S I. Control of plant development and gene expression by sugar signaling[J]. Current Opinion in Plant Biology,2005,8(1):93-102.
[11] 张昂. 葡萄冬芽打破休眠过程中抗氧化机制及次生代谢的研究[D]. 杨凌:西北农林科技大学,2008. Zhang A. Research on antioxidant mechanism and secondary metabolism of grape winter buds during dormancy breaking[D]. Yangling:Northwest A&F University,2008(in Chinese with English abstract).
[12] Kühn N,Orme?o-Nú?ez J,Jaque-Zamora G,et al. Photoperiod modifies the diurnal expression profile of VvPHYA and VvPHYB transcripts in field-grown grapevine leaves[J]. Journal of Plant Physiology,2009,166(11):1172-1180.
[13] Wisniewski M,Norelli J,Bassett C,et al. Ectopic expression of a novel peach(Prunus persica)CBF transcription factor in apple(Malus×domestica)results in short-day induced dormancy and increased cold hardiness[J]. Planta,2011,233(5):971-983.
[14] Bielenberg D G,Wang Y E,Li Z G,et al. Sequencing and annotation of the evergrowing locus in peach[Prunus persica(L.)Batsch]reveals a cluster of six MADS-box transcription factors as candidate genes for regulation of terminal bud formation[J]. Tree Genetics & Genomes,2008,4(3):495-507.
[15] Wang S Y,Faust M. Changes in the antioxidant system associated with budbreak in ‘Anna’ apple(Malus×domestica Borkh.)buds[J]. Journal of the American Society for Horticultural Science,1994,119(4):735-741.
[16] Yamane H,Kashiwa Y,Ooka T,et al. Suppression subtractive hybridization and differential screening reveals endodormancy-associated expression of an SVP/AGL24-type MADS-box gene in lateral vegetative buds of Japanese apricot[J]. Journal of the American Society for Horticultural Science,2008,133(5):708-716.
[17] Singh R K,Miskolczi P,Maurya J P,et al. A tree ortholog of SHORT VEGETATIVE PHASE floral repressor mediates photoperiodic control of bud dormancy[J]. Current Biology,2019,29(1):128-133.
[18] Santamaría M E,Rodríguez R,Ca?al M J,et al. Transcriptome analysis of chestnut(Castanea sativa)tree buds suggests a putative role for epigenetic control of bud dormancy[J]. Annals of Botany,2011,108(3):485-498.
[19] Leida C,Conesa A,Llácer G,et al. Histone modifications and expression of DAM6 gene in peach are modulated during bud dormancy release in a cultivar-dependent manner[J]. New Phytologist,2012,193(1):67-80.
[20] Gregis V,Sessa A,Dorca-Fornell C,et al. The Arabidopsis floral meristem identity genes AP1,AGL24 and SVP directly repress class B and C floral homeotic genes[J]. The Plant Journal,2009,60(4):626-637.
[21] 梅忠,朱友银,刘向蕾,等. 中国樱桃花芽休眠相关MADS-box基因的克隆与功能初探[J]. 植物生理学报,2018,54(9):1433-1440. Mei Z,Zhu Y Y,Liu X L,et al. Isolation and functional analysis of dormancy-associated MADS-box gene in cherry(Prunus pseudocerasus)flower bud[J]. Plant Physiology Journal,2018,54(9):1433-1440(in Chinese with English abstract).
[22] Niu Q F,Li J,Cai D Y,et al. Dormancy-associated MADS-box genes and microRNAs jointly control dormancy transition in pear(Pyrus pyrifolia white pear group)flower bud[J]. Journal of Experimental Botany,2016,67(1):239-257.
[23] Wang J Y,Gao Z,Li H,et al. Dormancy-associated MADS-box(DAM)genes influence chilling requirement of sweet cherries and co-regulate flower development with SOC1 gene[J]. International Journal of Molecular Sciences,2020,21(3):921.
[24] Wu R M,Tomes S,Karunairetnam S,et al. SVP-like MADS box genes control dormancy and budbreak in apple[J]. Frontiers in Plant Science,2017,8:477.
[25] Bai S L,Saito T,Sakamoto D,et al. Transcriptome analysis of Japanese pear(Pyrus pyrifolia Nakai)flower buds transitioning through endodormancy[J]. Plant and Cell Physiology,2013,54(7):1132-1151.
[26] Wu R M,Walton E F,Richardson A C,et al. Conservation and divergence of four kiwifruit SVP-like MADS-box genes suggest distinct roles in kiwifruit bud dormancy and flowering[J]. Journal of Experimental Botany,2012,63(2):797-807.
[27] 邵姁. 中国樱桃花芽休眠相关MADS-box转录因子克隆与功能分析[D]. 杭州:浙江师范大学,2016. Shao X. Cloning and functional analysis of MADS-box transcription factors related to dormancy of Chinese cherry flower buds[D]. Hangzhou:Zhejiang Normal University,2016(in Chinese with English abstract).
[28] 刘思,夏秀英,李波. 蓝莓花芽休眠相关MADS-box基因VcDAM1的克隆与表达分析[J]. 植物生理学报,2017,53(9):1728-1734. Liu S,Xia X Y,Li B. Cloning and expression analysis of dormancy-associated MADS-box gene VcDAM1 from blueberry(Vaccinium corymbosum)[J]. Plant Physiology Journal,2017,53(9):1728-1734(in Chinese with English abstract).
[29] 鄢馨卉. 梨休眠相关DAM基因的鉴定及功能分析[D]. 杭州:浙江大学,2019. Yan X H. Identification and functional analysis of pear dormancy associated DAM genes[D]. Hangzhou:Zhejiang University,2019(in Chinese with English abstract).
[30] 李亮,刘杭,张桂池,等. 不同低温需求量砂梨休眠相关基因PpMADS13的特征及表达模式[J]. 亚热带植物科学,2016,45(1):42-47. Li L,Liu H,Zhang G C,et al. Characteristics and expression of dormancy-associated MADS-box PpMADS13 in different chilling requirement pear cultivars[J]. Subtropical Plant Science,2016,45(1):42-47(in Chinese with English abstract).
[31] Yamane H,Ooka T,Jotatsu H,et al. Expressional regulation of PpDAM5 and PpDAM6,peach(Prunus persica)dormancy-associated MADS-box genes,by low temperature and dormancy-breaking reagent treatment[J]. Journal of Experimental Botany,2011,62(10):3481-3488.
[32] 孙艳飞,闫顺杰,李勇. 桃树休眠相关基因(DAM)研究进展[J]. 河北果树,2013(6):1-2. Sun Y F,Yan S J,Li Y. Research progress of peach dormancy-related gene DAM[J]. Hebei Fruits,2013(6):1-2(in Chinese with English abstract).
[33] Sasaki R,Yamane H,Ooka T,et al. Functional and expressional analyses of PmDAM genes associated with endodormancy in Japanese apricot[J]. Plant Physiology,2011,157(1):485-497.
[34] Zhao K,Zhou Y Z,Ahmad S,et al. Comprehensive cloning of Prunus mume dormancy associated MADS-box genes and their response in flower bud development and dormancy[J]. Frontiers in Plant Science,2018,9:17.
[35] Porto D D,da Silveira Falavigna V,Arenhart R A,et al. Structural genomics and transcriptional characterization of the Dormancy-Associated MADS-box genes during bud dormancy progression in apple[J]. Tree Genetics & Genomes,2016,12(3):46.
[36] Kumar G,Arya P,Gupta K,et al. Comparative phylogenetic analysis and transcriptional profiling of MADS-box gene family identified DAM and FLC-like genes in apple(Malus×domestica)[J]. Scientific Reports,2016,6:20695.
[37] Wu R M,Wang T C,Warren B A W,et al. Kiwifruit SVP2 gene prevents premature budbreak during dormancy[J]. Journal of Experimental Botany,2017,68(5):1071-1082.
[38] Wu R M,Wang T C,McGie T,et al. Overexpression of the kiwifruit SVP3 gene affects reproductive development and suppresses anthocyanin biosynthesis in petals,but has no effect on vegetative growth,dormancy,or flowering time[J]. Journal of Experimental Botany,2014,65(17):4985-4995.
[39] Balogh E,Halász J,Soltész A,et al. Identification,structural and functional characterization of dormancy regulator genes in apricot(Prunus armeniaca L.)[J]. Frontiers in Plant Science,2019,10:402.
[40] Diaz-Riquelme J,Lijavetzky D,Martinez-Zapater J M,et al. Genome-wide analysis of MIKCC-type MADS box genes in grapevine[J]. Plant Physiology,2009,149(1):354-369.
[41] Stockinger E J,Gilmour S J,Thomashow M F. Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE,a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit[J]. Proc Natl Acad Sci USA,1997,94(3):1035-1040.
[42] Prassinos C,Han K H. Characterization of a StMADS11 family gene from sweet cherry(Prunus avium)[C]//American Society of Plant Biologists Annual Meeting. Boston,MA,USA,2006.
[43] Hsu C Y,Adams J P,Kim H,et al. FLOWERING LOCUS T duplication coordinates reproductive and vegetative growth in perennial poplar[J]. Proc Natl Acad Sci USA,2011,108(26):10756-10761.
[44] 罗义维. 桑树休眠相关MADS-box基因的功能研究[D]. 重庆:西南大学,2018. Luo Y W. Characterization of dormancy related MADS-box genes in mulberry plants[D]. Chongqing:Southwest University,2018(in Chinese with English abstract).
[45] 杨堃,张朝红,李树秀,等. 葡萄SVP类MADS-box基因的克隆及表达分析[J]. 西北林学院学报,2012,27(4):117-123. Yang K,Zhang C H,Li S X,et al. Cloning and expression analysis of grape SVP-like MADS-box gene[J]. Journal of Northwest Forestry University,2012,27(4):117-123(in Chinese with English abstract).
[46] Busov V B. Plant development:dual roles of poplar SVL in vegetative bud dormancy[J]. Current Biology,2019,29(2):R68-R70.
[47] 高真真,王东岭,付喜玲,等. 油桃开花时间调控基因在花芽休眠过程中的表达分析[J]. 园艺学报,2016,43(12):2347-2358. Gao Z Z,Wang D L,Fu X L,et al. Expression analysis of flowering time regulating genes from nectarine flower buds in the process of dormancy[J]. Acta Horticulturae Sinica,2016,43(12):2347-2358(in Chinese with English abstract).
[48] Saito T,Bai S L,Imai T,et al. Histone modification and signalling cascade of the dormancy-associated MADS-box gene,PpMADS13-1,in Japanese pear(Pyrus pyrifolia)during endodormancy[J]. Plant,Cell & Environment,2015,38(6):1157-1166.
[49] Wu R M,Wang T C,Warren B A W,et al. Kiwifruit SVP2 controls developmental and drought-stress pathways[J]. Plant Molecular Biology,2018,96(3):233-244.
[50] Tuan P A,Bai S L,Saito T,et al. Dormancy-associated MADS-box(DAM)and the abscisic acid pathway regulate pear endodormancy through a feedback mechanism[J]. Plant and Cell Physiology,2017,58(8):1378-1390.
[51] Yamane H,Wada M,Honda C,et al. Overexpression of Prunus DAM6 inhibits growth,represses bud break competency of dormant buds and delays bud outgrowth in apple plants[J]. PLoS One,2019,14(4):e0214788.
[52] 王世祥,左希亚,邢利博,等. 苹果成花抑制蛋白SVP基因的克隆、表达及启动子活性分析[J]. 园艺学报,2019,46(8):1445-1457. Wang S X,Zuo X Y,Xing L B,et al. Cloning,expression pattern and promoter activity analysis of flowering regulatory gene SVP in apple(Malus×domestica)[J]. Acta Horticulturae Sinica,2019,46(8):1445-1457(in Chinese with English abstract).
[53] 赵倩. 草莓SVP同源基因的克隆与表达及其功能分析[D]. 沈阳:沈阳农业大学,2016. Zhao Q. Isolation,expression and function analysis of SVP-like genes in strawberry[D]. Shenyang:Shenyang Agricultural University,2016(in Chinese with English abstract).
[54] Andrés F,Porri A,Torti S,et al. SHORT VEGETATIVE PHASE reduces gibberellin biosynthesis at the Arabidopsis shoot apex to regulate the floral transition[J]. Proc Natl Acad Sci USA,2014,111(26):E2760-E2769.
[55] Wisniewski M,Norelli J,Artlip T. Overexpression of a peach CBF gene in apple:a model for understanding the integration of growth,dormancy,and cold hardiness in woody plants[J]. Frontiers in Plant Science,2015,6:85.
[56] Zhao K,Zhou Y Z,Ahmad S,et al. PmCBFs synthetically affect PmDAM6 by alternative promoter binding and protein complexes towards the dormancy of bud for Prunus mume[J]. Scientific Reports,2018,8:4527.
[57] Yang Q S,Niu Q F,Li J Z,et al. PpHB22,a member of HD-Zip proteins,activates PpDAM1 to regulate bud dormancy transition in ‘Suli’ pear(Pyrus pyrifolia White Pear Group)[J]. Plant Physiology and Biochemistry,2018,127:355-365.
[58] Wang Q J,Xu G X,Zhao X H,et al. Transcription factor TCP20 regulates peach bud endodormancy by inhibiting PpDAM5/PpDAM6 and interacting with ABF2[J]. Journal of Experimental Botany,2020,71(4):1585-1597.
[59] de la Fuente L,Conesa A,Lloret A,et al. Genome-wide changes in histone H3 lysine 27 trimethylation associated with bud dormancy release in peach[J]. Tree Genetics & Genomes,2015,11(3):45.
[60] Hiratsu K,Matsui K,Koyama T,et al. Dominant repression of target genes by chimeric repressors that include the EAR motif,a repression domain,in Arabidopsis[J]. The Plant Journal,2003,34(5):733-739.
[61] Jiménez S,Lawton-Rauh A L,Reighard G L,et al. Phylogenetic analysis and molecular evolution of the dormancy associated MADS-box genes from peach[J]. BMC Plant Biology,2009,9(1):81.
[62] Kagale S,Rozwadowski K. EAR motif-mediated transcriptional repression in plants[J]. Epigenetics,2011,6(2):141-146.
[63] Wu R M,Wang T C,Richardson A C,et al. Histone modification and activation by SOC1-like and drought stress-related transcription factors may regulate AcSVP2 expression during kiwifruit winter dormancy[J]. Plant Science,2019,281:242-250.
[64] Yamane H,Tao R,Ooka T,et al. Comparative analyses of dormancy-associated MADS-box genes,PpDAM5 and PpDAM6,in low-and high-chill peaches(Prunus persica L.)[J]. Journal of the Japanese Society for Horticultural Science,2011,80(3):276-283.
[65] da Silveira Falavigna V,Guitton B,Costes E,et al. I want to(bud)break free:the potential role of DAM and SVP-like genes in regulating dormancy cycle in temperate fruit trees[J]. Frontiers in Plant Science,2019,9:1990.
[66] 牛歆雨,德庆措姆,朗杰,等. 葡萄ARP/DRM基因家族克隆及其在休眠解除过程中的表达[J]. 分子植物育种,2018,16(18):5897-5903. Niu X Y,Deqing C M,Lang J,et al. Cloning of ARP/DRM gene family from grape and its expression during the process of dormancy-release[J]. Molecular Plant Breeding,2018,16(18):5897-5903(in Chinese with English abstract).
[67] Ito A,Tuan P A,Saito T,et al. Changes in phytohormone content and associated gene expression throughout the stages of pear(Pyrus pyrifolia Nakai)dormancy[J]. Tree Physiology,2019.DOI:10.1093/treephys/tpz101.
[68] Liu J Y,Sherif S M. Hormonal orchestration of bud dormancy cycle in deciduous woody perennials[J]. Frontiers in Plant Science,2019,10:1136.
[69] Liu X,Sun Z C,Dong W,et al. Expansion and functional divergence of the SHORT VEGETATIVE PHASE(SVP)genes in eudicots[J]. Genome Biology and Evolution,2018,10(11):3026-3037.
[70] 吴璇,吴少华. 木本植物花芽休眠中激素调节的分子机制研究进展[J]. 武夷学院学报,2015,34(3):53-60. Wu X,Wu S H. Progress of molecular mechanism on hormone regulation of flower bud dormancy in woody plants[J]. Journal of Wuyi University,2015,34(3):53-60(in Chinese with English abstract).
[71] Morris C F,Anderberg R J,Goldmark P J,et al. Molecular cloning and expression of abscisic acid-responsive genes in embryos of dormant wheat seeds[J]. Plant Physiology,1991,95(3):814-821.
[72] Rantanen M,Palonen P. Hot water treatment released endodormancy but reduced number of flowers in potted red raspberry plants[J]. HortScience,2010,45(6):894-898.
[73] 员盎然. 黑穗醋栗(Ribes nigurm L.)二次萌发芽酚类物质鉴定及代谢特征研究[D]. 哈尔滨:东北农业大学,2019. Yuan A R. Identification and metabolic characteristics of phenolic compounds in secondary germination of black currant(Ribes nigurm L.)[D]. Harbin:Northeast Agricultural University,2019(in Chinese with English abstract).
[74] Li Y S,Zhou Y Z,Yang W R,et al. Isolation and functional characterization of SVP-like genes in Prunus mume[J]. Scientia Horticulturae,2017,215:91-101.

备注/Memo

备注/Memo:
收稿日期:2019-12-30。
基金项目:江苏省自然科学基金项目(SBK2020020002);江苏省博士后科研资助计划项目(2020Z052);国家自然科学基金项目(31772283);江苏省重点研发计划重点项目(BE2018389)
作者简介:上官凌飞,副教授,研究方向为葡萄栽培生理与分子生物学及葡萄基因组学,E-mail:shangguanlf@njau.edu.cn。
通信作者:上官凌飞,副教授,研究方向为葡萄栽培生理与分子生物学及葡萄基因组学,E-mail:shangguanlf@njau.edu.cn。
更新日期/Last Update: 1900-01-01