[1]王园园,刘琳莉,李雷,等.复合性状转cry2A*/bar基因水稻T2A-1的生存竞争能力[J].南京农业大学学报,2020,43(5):862-868.[doi:10.7685/jnau.201910041]
 WANG Yuanyuan,LIU Linli,LI Lei,et al.Survival competitive ability of stacked transgenic rice T2A-1 with cry2A*/bar[J].Journal of Nanjing Agricultural University,2020,43(5):862-868.[doi:10.7685/jnau.201910041]
点击复制

复合性状转cry2A*/bar基因水稻T2A-1的生存竞争能力()
分享到:

《南京农业大学学报》[ISSN:1000-2030/CN:32-1148/S]

卷:
43卷
期数:
2020年5期
页码:
862-868
栏目:
生物与环境
出版日期:
2020-09-15

文章信息/Info

Title:
Survival competitive ability of stacked transgenic rice T2A-1 with cry2A*/bar
作者:
王园园 刘琳莉 李雷 戴伟民 强胜 宋小玲
南京农业大学生命科学学院, 江苏 南京 210095
Author(s):
WANG Yuanyuan LIU Linli LI Lei DAI Weimin QIANG Sheng SONG Xiaoling
College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
关键词:
复合性状转基因水稻T2A-1杂草化生存竞争能力
Keywords:
stacked transgenic riceT2A-1weedinesssurvival competitive ability
分类号:
S511.9
DOI:
10.7685/jnau.201910041
摘要:
[目的] 本文旨在为评估复合性状转cry2A*/bar基因水稻T2A-1自身杂草化的风险。[方法] 在农田生态环境下,以T2A-1、受体水稻‘明恢63’(MH63)、南京本地常规籼型水稻‘中莲恢510’(LC)和江苏泰州杂草稻(WRTZ)为试验材料,测定供试材料在单种或混种条件下的营养和生殖生长指标,结合落粒性和种子生存能力,评价T2A-1的生存竞争能力。[结果] T2A-1、MH63、LC和WRTZ出苗率为92.62%~98.35%。T2A-1与MH63的抽穗期相同,为9月12日,但晚于LC 2 d,晚于WRTZ 5 d。在单种条件下,T2A-1的相对竞争能力与MH63及LC相当,显著高于WRTZ。在混种条件下,T2A-1的相对竞争能力与MH63相当,显著高于LC和WRTZ。T2A-1的落粒率(4.17%)与MH63(3.69%)相似,两者均显著低于LC(9.50%)和WRTZ(11.29%)。T2A-1的种子生存能力与MH63相似,均显著高于LC,显著低于WRTZ。[结论] 在本试验条件下,T2A-1的竞争能力与受体水稻相当,但高于当地常规水稻,结合落粒性低和种子生存能力弱来综合分析,T2A-1的自身杂草化的风险较低。
Abstract:
[Objectives] The paper aimed assessing the risk of weediness of stacked transgenic rice T2A-1 with cry2A*/bar.[Methods] In this experiment,T2A-1,its receptor rice ‘Minghui 63’ (MH63),Nanjing local conventional rice ‘Zhonglianhui 510’ (LC) and Jiangsu Taizhou weedy rice (WRTZ) were used as experimental materials. The survival competitive ability of T2A-1,compared with MH63,LC and WRTZ,was evaluated by measuring the vegetative and reproductive variables,seed shattering and seed viability in pure planting or mixed planting with non-transgenic materials under field conditions.[Results] The emergence rate of T2A-1,MH63,LC and WRTZ ranged from 92.62% to 98.35%. The heading date of T2A-1 and MH63 was the same on September 12,which was 2 days later than LC,and 5 days later than WRTZ. Under the pure planting,the relative competitive ability of T2A-1 was similar to those of MH63 and LC,but significantly greater than that of WRTZ. Under the mixed planting,the relative competitive ability of T2A-1 was similar to that of MH63,but significantly greater than those of LC and WRTZ. The seed shattering of T2A-1 (4.17%) was similar to that of MH63 (3.69%),and both of them were significantly lower than those of LC (9.50%) and WRTZ (11.29%). The seed viability of T2A-1 was similar to that of MH63,significantly higher and lower than those of LC and WRTZ,respectively.[Conclusions] T2A-1 had strong competitive advantages under the experimental conditions,and the potential weediness risk of T2A-1 was very low according to comprehensive analysis of seed shattering,seed viability.

参考文献/References:

[1] Snow A A,Culley T M,Campbell L G,et al. Long-term persistence of crop alleles in weedy populations of wild radish(Raphanus raphanistrum)[J]. New Phytologist,2010,186(2):537-548.
[2] Huang Y,Li J K,Qiang S,et al. Transgenic restorer rice line T1c-19 with stacked cry1C*/bar genes has low weediness potential without selection pressure[J]. Journal of Integrative Agriculture,2016,15(5):1046-1058.
[3] 张晶旭. 杂交水稻参与杂草稻起源的证据及抗除草剂转基因水稻生态风险研究[D]. 南京:南京农业大学,2015. Zhang J X. Evidence of hybrid rice’s involvement in the origin of weedy rice and ecological risk of herbicide resistant transgenic rice[D]. Nanjing:Nanjing Agricultural University,2015(in Chinese with English abstract).
[4] Nakai S C,Hoshikawa K,Shimono A,et al. Transportability of confined field trial data from cultivation to import countries for environmental risk assessment of genetically modified crops[J]. Transgenic Research,2015,24(6):929-944.
[5] Lu B R,Yang C. Gene flow from genetically modified rice to its wild relatives:assessing potential ecological consequences[J]. Biotechnology Advances,2009,27(6):1083-1091.
[6] Liu C Y,Li J J,Gao J H,et al. A built-in mechanism to mitigate the spread of insect-resistance and herbicide-tolerance transgenes into weedy rice populations[J]. PLoS One,2012,7(2):e31625.
[7] Shivrain V K,Burgos N R,Anders M M,et al. Gene flow between ClearfieldTM rice and red rice[J]. Crop Protection,2007,26(3):349-356.
[8] 崔荣荣,韦颖,孟攀潘,等. 抗草铵膦转基因水稻明恢86B杂草化潜力评价[J]. 水稻科学,2012,26(4):467-475. Cui R R,Wei Y,Meng P P,et al. Assessmenton potential weediness of transgenic glufosinate-resistant rice Minghui86B[J]. Chinese Journal of Rice Science,2012,26(4):467-475(in Chinese with English abstract).
[9] 余柳青,渠开山,周勇军,等. 抗除草剂转基因水稻对稻田杂草种群的影响[J]. 中国水稻科学,2005,19(1):68-73. Yu L Q,Qu K S,Zhou Y J,et al. Effect of transgenic rice with glufosinate-resistance on weed populations in paddy field[J]. Chinese Journal of Rice Science,2005,19(1):68-73(in Chinese with English abstract).
[10] Jung H I,Kuk Y I,Kim H Y,et al. Resistance levels and fitness of protoporphyrinogen oxidase(PROTOX)inhibitor-resistant transgenic rice in paddy fields[J]. Field Crops Research,2010,115(2):125-131.
[11] Chun Y J,Kim D I,Park K W,et al. Fitness cost and competitive ability of transgenic herbicide-tolerant rice expressing a protoporphyrinogen oxidase gene[J]. Journal of Ecology and Environment,2013,36(1):39-47.
[12] Tu J M,Zhang G A,Datta K,et al. Field performance of transgenicelite commercial hybrid rice expressing Bacillus thuringiensis δ-endotoxin[J]. Nature Biotechnology,2000,18(10):1101-1104.
[13] Chen L Y,Snow A A,Wang F,et al. Effects of insect-resistance transgenes on fecundity in rice(Oryza sativa,Poaceae):a test for underlying costs[J]. American Journal of Botany,2006,93(1):94-101.
[14] 张富丽,刘勇,佟洪金,等. 不同虫压下转Bt基因水稻与非转基因水稻生态适合度差异[J]. 应用与环境生物学报,2012,18(1):35-41. Zhang F L,Liu Y,Tong H J,et al. Differences in ecological fitness between Bt transgenic rice and conventional rice under insect-infestation pressures[J]. Chinese Journal of Applied and Environmental Biology,2012,18(1):35-41(in Chinese with English abstract).
[15] Chen H,Tang W,Xu C G,et al. Transgenic indica rice plants harboring a synthetic cry2A* gene of Bacillus thuringiensis exhibit enhanced resistance against lepidopteran rice pests[J]. Theoretical and Applied Genetics,2005,111(7):1330-1337.
[16] Yang Y J,He J J,Dong B Q,et al. Effects of two Bt rice lines T2A-1 and T1C-19 on the ecological fitness and detoxification enzymes of Nilaparvata lugens(Hemiptera:Delphacidae)from different populations[J]. Journal of Economic Entomology,2012,106(4):1887-1893.
[17] 李继坤. 复合性状转cry1C*/bar基因水稻Tlc-19向杂草稻的基因漂移及杂交后代适合度的研究[D]. 南京:南京农业大学,2016. Li J K. Study on the gene flow of hybrid rice tlc-19 transformed from cry1C*/bar to weedy rice and the fitness of hybrid progeny[D]. Nanjing:Nanjing Agricultural University,2016(in Chinese with English abstract).
[18] Martinkova Z,Honek A. Asymmetrical intraspecific competition in Echinochloa crus-galli is related to differences in the timing of seedling emergence and seedling vigour[J]. Plant Ecology,2011,212(11):1831-1839.
[19] 黄鹞. 两种抗虫抗除草剂复合性状转基因水稻的杂草化潜力研究[D]. 南京:南京农业大学,2015. Huang Y. Study on the weed potential of two insect resistant and herbicide resistant transgenic rice[D]. Nanjing:Nanjing Agricultural University,2015(in Chinese with English abstract).
[20] Lin Z W,Griffith M E,Li X R,et al. Origin of seed shattering in rice(Oryza sativa L.)[J]. Planta,2007,226(1):11-20.
[21] 杨绍华,杨玲,李建君,等. 水稻落粒性的研究进展[J]. 天津农业科学,2011,17(3):112-114. Yang S H,Yang L,Li J J,et al. Research progress of the seed shattering in rice[J]. Tianjin Agricultural Sciences,2011,17(3):112-114(in Chinese with English abstract).
[22] Song X L,Wang Z,Qiang S. Agronomic performance of F1,F2 and F3 hybrids between weedy rice and transgenic glufosinate-resistant rice[J]. Pest Management Science,2011,67(8):921-931.
[23] 宋小玲,强胜,彭于发. 抗草甘膦转基因大豆(Glycine mac L. Merri)杂草性评价的试验实例[J]. 中国农业科学,2009,42(1):145-153. Song X L,Qiang S,Peng Y F. An experimental case of safety assessment of weediness of transgenic glyphosate-resistant soybean(Glycine mac L. Merri)[J]. Scientia Agricultura Sinica,2009,42(1):145-153(in Chinese with English abstract).
[24] 黄鹞,王建,戴伟民,等. 复合性状转基因水稻B2A68在南京地区杂草化的风险评估[J]. 杂草科学,2014,32(1):60-68. Huang Y,Wang J,Dai W M,et al. The risk assessment of potential weediness of gene stacked rice B2A68 in Nanjing area[J]. Weed Science,2014,32(1):60-68(in Chinese with English abstract).
[25] 李伟,郭建夫,袁红旭,等. 抗真菌转基因水稻生态适合度评价[J]. 生态学报,2014,34(10):2581-2588. Li W,Guo J F,Yuan H X,et al. Assessment on the ecological fitness of anti-fungal transgenic rice[J]. Acta Ecologica Sinica,2014,34(10):2581-2588(in Chinese with English abstract).

备注/Memo

备注/Memo:
收稿日期:2019-10-26。
基金项目:国家转基因生物新品种培育重大专项(2016ZX08011-001)
作者简介:王园园,硕士研究生。
通信作者:宋小玲,教授,研究方向为转基因作物生态安全评估,E-mail:sxl@njau.edu.cn。
更新日期/Last Update: 1900-01-01