[1]李香秀,王玥,孙乃岩,等.6种常用抗寄生虫药在鸡的生物药剂学分类研究[J].南京农业大学学报,2020,43(5):919-926.[doi:10.7685/jnau.201912014]
 LI Xiangxiu,WANG Yue,SUN Naiyan,et al.Biopharmaceutical classification system research for six commonly used anti-parasitic drugs in chickens[J].Journal of Nanjing Agricultural University,2020,43(5):919-926.[doi:10.7685/jnau.201912014]
点击复制

6种常用抗寄生虫药在鸡的生物药剂学分类研究()
分享到:

《南京农业大学学报》[ISSN:1000-2030/CN:32-1148/S]

卷:
43卷
期数:
2020年5期
页码:
919-926
栏目:
动物科学
出版日期:
2020-09-15

文章信息/Info

Title:
Biopharmaceutical classification system research for six commonly used anti-parasitic drugs in chickens
作者:
李香秀1 王玥1 孙乃岩1 刘洋1 黄金虎1 樊萍2 王丽平1
1. 南京农业大学动物医学院, 江苏 南京 210095;
2. 乾元浩南京生物药厂, 江苏 南京 210012
Author(s):
LI Xiangxiu1 WANG Yue1 SUN Naiyan1 LIU Yang1 HUANG Jinhu1 FAN Ping2 WANG Liping1
1. College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China;
2. Nanjing Biopharmaceutical Factory, QYH Biotech Company Limited, Nanjing 210012, China
关键词:
生物药剂学分类系统(BCS)溶解度渗透性单层细胞模型鸡小肠原位灌流
Keywords:
biopharmaceutical classification system(BCS)solubilitypermeabilitymonolayer cell methodthe in situ intestine perfusion
分类号:
S859.7
DOI:
10.7685/jnau.201912014
摘要:
[目的] 本研究拟建立基于靶动物生理参数的禽用药物溶解度和渗透性测定方法,并依据生物药剂学分类系统(Biopharmaceutics Classification System,BCS)对6种兽医临床常用抗寄生虫药(吡喹酮、阿苯达唑、盐酸左旋咪唑、盐酸氨丙啉、地克珠利、常山酮)进行分类。[方法] 1日龄AA内鸡90只饲养至8周龄,分别于1、4和8周龄时测定鸡体温、胃肠液体积和胃肠pH值,通过计算剂量数(Do)确定6种药物的生理溶解度及分类;以酒石酸美托洛尔为高低渗透性参考标准,结合单层细胞模型和鸡小肠原位灌流试验测定的药物表观渗透系数(Papp)和有效渗透系数(Peff),确定药物的渗透性并进行分类。[结果] 将鸡常用药物溶解度的测定条件规定为41℃及pH1~8的水性缓冲溶液,高溶解度的定义为药物单次给药的最高剂量能完全溶解于21 mL(进食)或7 mL(禁食)的水性缓冲溶液中。Do计算结果表明盐酸左旋咪唑、盐酸氨丙啉和常山酮在鸡进食及禁食条件下均为高溶解度药物,吡喹酮、阿苯达唑和地克珠利则为低溶解度药物。单层细胞模型法测得吡喹酮、阿苯达唑和盐酸左旋咪唑的Papp分别为12.92×10-6、15.12×10-6和14.64×10-6 cm·s-1,均高于酒石酸美托洛尔(6.58×10-6 cm·s-1),故为高渗透性药物。鸡小肠原位灌流试验结果表明,6种药物在鸡体内的Peff分别为0.76×10-4、1.35×10-4、0.93×10-4、0.05×10-4、0.66×10-4和0.31×10-4 cm·s-1,其中吡喹酮、阿苯达唑和盐酸左旋咪唑的Peff均高于酒石酸美托洛尔(0.68×10-4 cm·s-1),为高渗透性药物,与单层细胞模型法测定的结果相一致。综合6种药物的溶解度和渗透性测定结果,确定6种药物的BCS分类为:盐酸左旋咪唑为Ⅰ类药物;吡喹酮和阿苯达唑为Ⅱ类药物;盐酸氨丙啉和常山酮为Ⅲ类药物;地克珠利为Ⅳ类药物。[结论] 初步确定了鸡常用药物生理溶解度测定条件以及渗透性测定方法,完成了6种常用抗寄生虫药在鸡的BCS分类,为鸡常用药物BCS框架的建立奠定了基础。
Abstract:
[Objectives] This study intends to establish a biopharmaceutical classification system (BCS) method for determining the solubility and permeability of veterinary drugs based on the physiological parameters of target animals,and then to classify six antiparasitic drugs (praziquantel,albendazole,levamisole hydrochloride,amprolium hydrochloride,diclazuril and halofuginone) which are often used in the veterinary clinic.[Methods] The body temperature,the volume and pH of gastrointestinal of chickens were determined experimentally at the age of 1,4 and 8-week old,then the physiological solubility was determined and classified by calculating the dose number (Do) of each drug. The apparent permeability coefficient (Papp) and effective permeability coefficient (Peff) were determined using monolayer cell model and chicken small intestine in situ perfusion,respectively,and based on these parameters,the drug permeability was classified by comparing with the high-permeability drug metoprolol.[Results] The equilibrium solubility of each drug was measured in 41℃ buffer solutions under pH values of 1,3,5,7 and 8,respectively,and a drug is considered as highly soluble in chicken BCS when the highest dose strength is soluble in 21 mL (fed) or 7 mL (fasted) over the pH range of 1-8 at 41℃. The result showed that levamisole hydrochloride,amprolium hydrochloride and halofuginone were high solubility drugs under both feeding and fasting conditions. Praziquantel,albendazole and diclazuril were low solubility drugs. The Papp of praziquantel,albendazole and levamisole hydrochloride was 12.92×10-6,15.12×10-6 and 14.64×10-6 cm·s-1,respectively,which were higher than that of metoprolol (6.58×10-6 cm·s-1),identified as highly permeable drugs. The results of in situ perfusion of small intestine showed that the Peff of these six drugs were 0.76×10-4,1.35×10-4,0.93×10-4,0.05×10-4,0.66×10-4 and 0.31×10-4 cm·s-1,respectively,among which the Peff of praziquantel,albendazole and levamisole hydrochloride were higher than that of metoprolol (0.68×10-4 cm·s-1),thus were considered as highly permeable drugs. The result was consistent with the results of monolayer cell model. Based on the solubility and permeability results of each drug,levamisole hydrochloride was classified as classⅠdrug;praziquantel and albendazole were class Ⅱ drugs;ampicillin hydrochloride and abenzophenone were class Ⅲ drugs;diclazuril was a class Ⅳ drug.[Conclusions] This work highlights some of the significant challenges that would be encountered in developing a chicken BCS,and this valuable information could be served as a helpful tool during chicken products development and to minimize the potential risks when developing formulations.

参考文献/References:

[1] Amidon G L,Shah V P,Crison J R. A theoretical basis for a biopharmaceutic drug classification:the correlation of in vitro drug product dissolution and in vivo bioavailability[J]. Pharmaceutical Research,1995,12(3):413-420.
[2] Mehta M U,Uppoor R S,Conner D P,et al. Impact of the US FDA "biopharmaceutics classification system"(BCS)guidance on global drug development[J]. Molecular Pharmaceutics,2017,14(12):4334-4338.
[3] Polli J E. In vitro studies are sometimes better than conventional human pharmacokinetic in vivo studies in assessing bioequivalence of immediate-release solid oral dosage forms[J]. The AAPS Journal,2008,10(2):289-299.
[4] FDA. Waiver of in vivo bioavailability and bioequivalence studies for immediate-release solid oral dosage forms based on a biopharmaceutics classification system[S]. 2015. https://www.federalregister.gov/d/2015-10479.
[5] 高杨,耿立冬. FDA,WHO和EMA关于基于生物药剂学分类系统的生物等效性豁免指导原则的比较[J]. 中国新药杂志,2012,21(24):2861-2869. Gao Y,Geng L D. Comparison and discussion of FDA,WHO and EMA guidelines on BCS-based biowaiver[J]. Chinese Journal of New Drugs,2012,21(24):2861-2869(in Chinese with English absrtact).
[6] Morais J A G,Lobato M D R. The new European medicines agency guideline on the investigation of bioequivalence[J]. Basic & Clinical Pharmacology & Toxicology,2010,106(3):221-225.
[7] Marilyn N,Martinez M G P,Jim E R. Veterinary application of in vitro dissolution data and the biopharmaceutics classification system[J]. Pharmacopeial Forum,2004,30(6):2295-2302.
[8] Martinez M N,Papich M G. Drug solubility classification in the dog[J]. Journal of Veterinary Pharmacology and Therapeutics,2012,35(1):87-91.
[9] Chiou W L,Jeong H Y,Chung S M,et al. Evaluation of using dog as an animal model to study the fraction of oral dose absorbed of 43 drugs in humans[J]. Pharmaceutical Research,2000,17(2):135-140.
[10] Papich M G,Martinez M N. Applying biopharmaceutical classification system(BCS)criteria to predict oral absorption of drugs in dogs:challenges and pitfalls[J]. The AAPS Journal,2015,17(4):948-964.
[11] Kararli T T. Comparison of the gastrointestinal anatomy,physiology,and biochemistry of humans and commonly used laboratory animals[J]. Biopharmaceutics & Drug Disposition,1995,16(5):351-380.
[12] 李振霞,罗万和,李超,等. 兽用药物生物药剂学分类系统(BCS)的研究进展[J]. 中国兽药杂志,2018,52(6):72-79. Li Z X,Luo W H,Li C,et al. Research progress on veterinary drug biopharmaceutics classification system(BCS)[J]. Chinese Journal of Veterinary Drug,2018,52(6):72-79(in Chinese).
[13] 王丽平,刘洋,宋阳. 基于药物溶解性和渗透性测定的生物药剂分类系统在兽药制剂研发的应用前景[J]. 南京农业大学学报,2018,41(2):223-230. DOI:10.7685/jnau.201709009. Wang L P,Liu Y,Song Y. Application prospect of biopharmaceutical classification system based on drug solubility and permeability determination in veterinary drug development[J]. Journal of Nanjing Agricultural University,2018,41(2):223-230(in Chinese with English absrtact).
[14] Lui C Y,Amidon G L,Berardi R R,et al. Comparison of gastrointestinal pH in dogs and humans:implications on the use of the beagle dog as a model for oral absorption in humans[J]. Journal of Pharmaceutical Sciences,1986,75(3):271-274.
[15] Musther H,Olivares-Morales A,Hatley O J D,et al. Animal versus human oral drug bioavailability:do they correlate?[J]. European Journal of Pharmaceutical Sciences,2014,57(11):280-291.
[16] Dressman J B. Comparison of canine and human gastrointestinal physiology[J]. Pharmaceutical Research,1986,3(3):123-131.
[17] Khadra I,Zhou Z,Dunn C,et al. Statistical investigation of simulated intestinal fluid composition on the equilibrium solubility of biopharmaceutics classification system class Ⅱ drugs[J]. European Journal of Pharmaceutical Sciences,2015,67(3):65-75.
[18] Guo J,Elzinga P A,Hageman M J,et al. Rapid throughput solubility screening method for BCS class Ⅱ drugs in animal GI fluids and simulated human GI fluids using a 96-well format[J]. Journal of Pharmaceutical Sciences,2008,97(4):1427-1442.
[19] Volpe D A. Permeability classification of representative fluoroquinolones by a cell culture method[J]. AAPS Pharm Sci,2004,6(2):1-6.
[20] Irvine J D,Takahashi L,Lockhart K,et al. MDCK(madin-darby canine kidney)cells:a tool for membrane permeability screening[J]. Journal of Pharmaceutical Sciences,1999,88(1):28-33.
[21] Lentz K A,Hayashi J,Lucisano L J,et al. Development of a more rapid,reduced serum culture system for Caco-2 monolayers and application to the biopharmaceutics classification system[J]. International Journal of Pharmaceutics,2000,200(1):41-51.
[22] Thiel-Demby V E,Humphreys J E. Biopharmaceutics classification system:validation and learnings of an in vitro permeability assay[J]. Molecular Pharmaceutics,2009,6(1):11-18.
[23] Esaki T,Ohashi R,Watanabe R,et al. Constructing an in silico three-class predictor of human intestinal absorption with Caco-2 permeability and dried-dmso solubility[J]. Journal of Pharmaceutical Sciences,2019,108(11):3630-3639.
[24] 刘洋,郭荔,何方,等. 槲皮素对鸡P-糖蛋白转运功能的影响[J]. 畜牧与兽医,2019,51(2):47-51. Liu Y,Guo L,He F,et al. Effect of quercetin on the transport function of chicken P-glycoprotein[J]. Animal Husbandry and Veterinary Medicine,2019,51(2):47-51(in Chinese).
[25] Lozoya-Agullo I,Zur M,Wolk O,et al. In-situ intestinal rat perfusions for human Fabs prediction and BCS permeability class determination:investigation of the single-pass vs. the doluisio experimental approaches[J]. International Journal of Pharmaceutics,2015,480(1/2):1-7.
[26] Incecayir T,Tsume Y,Amidon G L. Comparison of the permeability of metoprolol and labetalol in rat,mouse,and Caco-2 cells:use as a reference standard for BCS classification.[J]. Molecular Pharmaceutics,2013,10(3):958-966.
[27] Takagi T,Ramachandran C,Bermejo M,et al. A provisional biopharmaceutical classification of the top 200 oral drug products in the United States,Great Britain,Spain,and Japan[J]. Molecular Pharmaceutics,2006,3(6):631-643.
[28] FDA. Guidence for industry,waiver of in vivo bioavailability and bioequivalence studies for immediate-release solid oral dosage forms based on a biopharmaceutics classification system[S]. 2000. http://www.fda.gov/cder/guidance/3618fnl.htm.
[29] Yu L X,Amidon G L,Polli J E,et al. Biopharmaceutics classification system:the scientific basis for biowaiver extensions[J]. Pharmaceutical Research,2002,19(7):921-925.

备注/Memo

备注/Memo:
收稿日期:2019-12-09。
基金项目:国家重点研发计划项目(2016YFD0501309)
作者简介:李香秀,硕士研究生。
通信作者:王丽平,教授,研究方向为兽药口服吸收机制和跨膜转运,E-mail:wlp71@163.com。
更新日期/Last Update: 1900-01-01