[1]肖茂华,张亨通,周爽,等.农业机械故障诊断技术研究进展与趋势[J].南京农业大学学报,2020,43(6):979-987.[doi:10.7685/jnau.202004002]
 XIAO Maohua,ZHANG Hengtong,ZHOU Shuang,et al.Research progress and trend of agricultural machinery fault diagnosis technology[J].Journal of Nanjing Agricultural University,2020,43(6):979-987.[doi:10.7685/jnau.202004002]
点击复制

农业机械故障诊断技术研究进展与趋势()
分享到:

《南京农业大学学报》[ISSN:1000-2030/CN:32-1148/S]

卷:
43卷
期数:
2020年6期
页码:
979-987
栏目:
综述
出版日期:
2020-11-10

文章信息/Info

Title:
Research progress and trend of agricultural machinery fault diagnosis technology
作者:
肖茂华 张亨通 周爽 汪开鑫 令长兵
南京农业大学工学院, 江苏 南京 210031
Author(s):
XIAO Maohua ZHANG Hengtong ZHOU Shuang WANG Kaixin LING Changbing
College of Engineering, Nanjing Agricultural University, Nanjing 210031, China
关键词:
农业机械故障诊断技术研究现状发展趋势
Keywords:
agricultural machineryfault diagnosis technologyresearch statusdevelopment trend
分类号:
S23
DOI:
10.7685/jnau.202004002
摘要:
随着农业经济的快速发展和现代农业机械化水平的不断提高,农业机械逐渐趋于精密复杂化,从而对农业机械故障诊断技术的时效性和准确性提出更高的要求。机械故障诊断技术是农业机械领域一大关键技术,也是目前农业机械领域研究的热点。本文以已有的理论知识为基础,结合国内、外文献对农业机械故障诊断技术进行综合阐述,详细介绍振动监测、油样分析、噪声监测和红外测温4大机械故障诊断技术的研究现状以及机械故障诊断技术的时频域信号分析方法,最后通过通用机械诊断技术的引入、智能化诊断技术在农业机械故障诊断中应用程度的不断提高、多种诊断技术的协调发展3个方面指出了农业机械故障诊断技术的发展趋势。本文为进一步发展农业机械故障诊断技术提供参考。
Abstract:
With the rapid development of agricultural economy and the continuous improvement of modern agricultural mechanization level,agricultural machinery gradually tends to be precise and complicated,which puts forward higher requirements on the timeliness and accuracy of fault diagnosis technology of agricultural machinery. Mechanical fault diagnosis is a key technology in the field of agricultural machinery. In this paper,based on the existing theoretical knowledge,and combined with domestic and foreign literature,the fault diagnosis technology of agricultural machinery was comprehensively expounded. The research status of the four major mechanical fault diagnosis technologies of vibration monitoring,oil sample analysis,noise monitoring and infrared temperature measurement,and the time-frequency domain signal analysis methods of mechanical fault diagnosis technology were introduced in detail. Finally,the development trend of agricultural machinery fault diagnosis technologies was pointed out from different aspects,including the introduction of general machinery diagnosis technology,the continuous improvement of the application of intelligent diagnosis technology in the diagnosis of agricultural machinery faults,and the coordinated development of multiple diagnostic technologies. This paper can provide a reference for the further development of fault diagnosis technology of agricultural machinery.

参考文献/References:

[1] 方师乐,黄祖辉.新中国成立70年来我国农业机械化的阶段性演变与发展趋势[J]. 农业经济问题,2019,40(10):36-49. Fang S L,Huang Z H. 70th anniversary of the founding of the PRC:the transition,influence factor and trend of China’s agricultural mechanization[J]. Issues of Agricultural Economy,2019,40(10):36-49(in Chinese with English abstract).
[2] 郭刘粉.基于GPS导航插秧机的路径规划研究[D]. 杭州:浙江理工大学,2018. Guo L F. Research on the path planning of transplanter based on GPS navigation[D]. Hangzhou:Zhejiang Sci-Tech University,2018(in Chinese with English abstract).
[3] 刘沛,陈军,张明颖.基于激光导航的果园拖拉机自动控制系统[J]. 农业工程学报,2011,27(3):196-199. Liu P,Chen J,Zhang M Y. Automatic control system of orchard tractor based on laser navigation[J]. Transactions of the Chinese Society of Agricultural Engineering,2011,27(3):196-199(in Chinese with English abstract).
[4] 何雄奎.植保精准施药技术装备[J]. 农业工程技术,2017,37(30):22-26. He X K. Technical equipment for precision application of plant protection[J]. Agricultural Engineering Technology,2017,37(30):22-26(in Chinese).
[5] Craessaerts G,de Baerdemaeker J,Saeys W. Fault diagnostic systems for agricultural machinery[J]. Biosystems Engineering,2010,106(1):26-36.
[6] Sun P F,He Y. Study on remote distributed fault diagnosis system in modern agricultural machinery[J]. Advanced Materials Research,2011,225/226:356-359.
[7] Sakthivel N R,Sugumaran V,Babudevasenapati S. Vibration based fault diagnosis of monoblock centrifugal pump using decision tree[J]. Expert Systems with Applications,2010,37(6):4040-4049.
[8] Kankar P K,Sharma S C,Harsha S P. Fault diagnosis of ball bearings using machine learning methods[J]. Expert Systems with Applications,2011,38(3):1876-1886.
[9] Buono D,Siano D,Frosina E,et al. Gerotor pump cavitation monitoring and fault diagnosis using vibration analysis through the employment of auto-regressive-moving-average technique[J]. Simulation Modelling Practice and Theory,2017,71:61-82.
[10] Fan Z,Li H. A hybrid approach for fault diagnosis of planetary bearings using an internal vibration sensor[J]. Measurement,2015,64:71-80.
[11] Dolenc B,Bo?koski P,Juri?i? D. Distributed bearing fault diagnosis based on vibration analysis[J]. Mechanical Systems and Signal Processing,2016,66/67:521-532.
[12] Brkovic A,Gajic D,Gligorijevic J,et al. Early fault detection and diagnosis in bearings for more efficient operation of rotating machinery[J]. Energy,2017,136:63-71.
[13] 虞和济.机械故障诊断丛书——故障诊断的基本原理[M]. 北京:冶金工业出版社,1989:15-30. Yu H J. Mechanical Fault Diagnosis Series:Basic Principles of Fault Diagnosis[M]. Beijing:Metallurgical Industry Press,1989:15-30(in Chinese).
[14] 庞茂,周晓军,孟庆华,等. 在线噪声检测及噪声信号的故障诊断技术研究[J]. 传感技术学报,2006,19(1):142-145. Pang M,Zhou X J,Meng Q H,et al. On line noise measurement and fault diagnosis based on noise signal[J]. Chinese Journal of Sensors and Actuators,2006,19(1):142-145(in Chinese with English abstract).
[15] 程利军,张英堂,罗亮,等. 柴油机缸盖噪声信号处理方法及故障诊断研究[J]. 振动与冲击,2009,28(4):173-176,212. Cheng L J,Zhang Y T,Luo L,et al. Signal processing method and fault diagnosis for cylinder head noise of an engine[J]. Journal of Vibration and Shock,2009,28(4):173-176,212(in Chinese with English abstract).
[16] 魏闻达,陈德智,侯新贵,等. 基于定子电流信号和噪声信号的异步电动机转子断条故障诊断[J]. 电机与控制应用,2015,42(6):69-72. Wei W D,Chen D Z,Hou X G,et al. Fault diagnosis of broken rotor bars of asynchronous motors based on stator winding signal current and noise signal[J]. Electric Machines & Control Application,2015,42(6):69-72(in Chinese with English abstract).
[17] 邱荣华,张辉,张笑如.油液分析技术及其在现代造纸机械故障诊断中的应用[J]. 中国造纸学报,2009,24(3):121-126. Qiu R H,Zhang H,Zhang X R. Oil analysis technique and its application in modern papermaking machinery fault diagnosis[J]. Transactions of China Pulp and Paper,2009,24(3):121-126(in Chinese with English abstract).
[18] 姜雪丽.基于油样分析技术的往复泵状态监测系统研究[D]. 常州:江苏工业学院,2008. Jiang X L. A study of condition monitoring system of reciprocating pump based on oil analysis technique[D]. Changzhou:Jiangsu Institute of Technology,2008(in Chinese with English abstract).
[19] 郑长松,马彪,马源.基于油液光谱分析的综合传动状态监测试验研究[J]. 光谱学与光谱分析,2009,29(3):749-751. Zheng C S,Ma B,Ma Y. Test research on state monitor of PSST by oil spectrometric analysis[J]. Spectroscopy and Spectral Analysis,2009,29(3):749-751(in Chinese with English abstract).
[20] 周侣,崔昊杨.红外测温技术在电力设备故障诊断中的应用[J]. 上海电力学院学报,2016,32(6):543-546,569. Zhou L,Cui H Y. Study of infrared technique used in diagnosis of electric power equipment[J]. Journal of Shanghai University of Electric Power,2016,32(6):543-546,569(in Chinese with English abstract).
[21] 赵韶亭,张震.红外测温技术在大型直流电机转子温度监测中的研究与应用[J]. 科技经济导刊,2016(27):37,19. Zhao S T,Zhang Z. Research and application of infrared temperature measurement technology in rotor temperature monitoring of large dc motors[J]. Technology and Economic Guide,2016(27):37,19(in Chinese).
[22] 王玉龙.改进的EEMD分析方法及其在故障诊断中的应用[D]. 天津:天津大学,2016. Wang Y L. The improved EEMD analysis method and its application to fault diagnosis[D]. Tianjin:Tianjin University,2016(in Chinese with English abstract).
[23] 李舜酩,郭海东,李殿荣.振动信号处理方法综述[J]. 仪器仪表学报,2013,34(8):1907-1915. Li S M,Guo H D,Li D R. Review of vibration signal processing methods[J]. Chinese Journal of Scientific Instrument,2013,34(8):1907-1915(in Chinese with English abstract).
[24] 马建仓,刘琦,程存虎,等. 依据振动加速度信号绘制航空发动机转子轴心轨迹的方法[J]. 航空计算技术,2009,39(4):10-13. Ma J C,Liu Q,Cheng C H,et al. Plotting the axis tract of aero-engine based on vibration acceleration signals[J]. Aeronautical Computing Technique,2009:39(4):10-13(in Chinese with English abstract).
[25] 朱培鑫.基于振动信号的旋转机械故障特征提取方法研究[D]. 哈尔滨:哈尔滨工程大学,2014. Zhu P X. Research of rotating machinery fault feature extraction based on vibration signal[D]. Harbin:Harbin Engineering University,2014(in Chinese with English abstract).
[26] 张西宁,周融通,郭清林,等. 局部倒频谱编辑方法及其在齿轮箱微弱轴承故障特征提取中的应用[J]. 西安交通大学学报,2019,53(12):1-9. Zhang X N,Zhou R T,Guo Q L,et al. Local cepstral editing procedure with applications to slight gearbox bearing fault feature extraction[J]. Journal of Xi’an Jiaotong University,2019,53(12):1-9(in Chinese with English abstract).
[27] Qi X X,Yuan Z H,Han X W. Diagnosis of misalignment faults by tacholess order tracking analysis and RBF networks[J]. Neurocomputing,2015,169:439-448.
[28] Liu Y,Zhao Y L,Lang Z Q,et al. Weighted contribution rate of nonlinear output frequency response functions and its application to rotor system fault diagnosis[J]. Journal of Sound and Vibration,2019,460:114882.
[29] Chen J L,Zi Y Y,He Z J,et al. Compound faults detection of rotating machinery using improved adaptive redundant lifting multiwavelet[J]. Mechanical Systems and Signal Processing,2013,38(1):36-54.
[30] Cui L L,Wang J,Lee S. Matching pursuit of an adaptive impulse dictionary for bearing fault diagnosis[J]. Journal of Sound and Vibration,2014,333(10):2840-2862.
[31] Feng Z P,Liang M,Chu F L. Recent advances in time-frequency analysis methods for machinery fault diagnosis:a review with application examples[J]. Mechanical Systems and Signal Processing,2013,38(1):165-205.
[32] Pons-Llinares J,Morinigo-Sotelo D,Duque-Perez O,et al. Transient detection of close components through the chirplet transform:rotor faults in inverter-fed induction motors[C]//Perez-Alonso M. Conference of the IEEE Industrial Electronics Society. Dallas:IEEE,2014:3386-3392.
[33] Saidi L,Ali J B,Fnaiech F. Bi-spectrum based-EMD applied to the non-stationary vibration signals for bearing faults diagnosis[J]. ISA Transactions,2014,53(5):1650-1660.
[34] 许畅.时频联合分析及其在非平稳振动信号处理中的应用[D]. 哈尔滨:哈尔滨工业大学,2016. Xu C. Joint time frequency analysis and their applications on nonstationary vibration processing[D]. Harbin:Harbin Institute of Technology,2016(in Chinese with English abstract).
[35] Luo J S,Yu D J,Liang M. Gear fault detection under time-varying rotating speed via joint application of multiscale chirplet path pursuit and multiscale morphology analysis[J]. Structural Health Monitoring,2012,11(5):526-537.
[36] Luo J S,Yu D J,Liang M. Application of multi-scale chirplet path pursuit and fractional Fourier transform for gear fault detection in speed up and speed-down processes[J]. Journal of Sound and Vibration,2012,331(22):4971-4986.
[37] Chen X W,Feng Z P. Iterative generalized time-frequency reassignment for planetary gearbox fault diagnosis under nonstationary conditions[J]. Mechanical Systems & Signal Processing,2016,80:429-444.
[38] 宋秀,尉宇.基于短时分数阶傅里叶变换的异步电机转子断条故障诊断[J]. 武汉科技大学学报,2016,39(2):145-149. Song X,Wei Y. Fault diagnosis of broken rotor bar in asynchronous motor based on short-time fractional Fourier transform[J]. Journal of Wuhan University of Science and Technology,2016,39(2):145-149(in Chinese with English abstract).
[39] Chandra N H,Sekhar A S. Fault detection in rotor bearing systems using time frequency techniques[J]. Mechanical Systems and Signal Processing,2016,72/73:105-133.
[40] Zheng J D,Pan H Y,Yang S B,et al. Adaptive parameterless empirical wavelet transform based time-frequency analysis method and its application to rotor rubbing fault diagnosis[J]. Signal Processing,2017,130:305-314.
[41] Cheng Y,Wang Z W,Chen B Y,et al. An improved complementary ensemble empirical mode decomposition with adaptive noise and its application to rolling element bearing fault diagnosis[J]. ISA Transactions,2019,91:218-234.
[42] Liu W Y,Han J G,Jiang J L. A novel ball bearing fault diagnosis approach based on auto term window method[J]. Measurement,2013,46(10):4032-4037.
[43] 彭延峰.自适应最稀疏时频方法及其在旋转机械故障诊断中的应用[D]. 长沙:湖南大学,2017. Peng Y F. Adaptive and sparsest time-frequency analysis method and its applications to fault diagnosis for rotating machinery[D]. Changsha:Hunan University,2017(in Chinese with English abstract).
[44] 林彤.浅谈农业机械故障诊断技术发展方向[J]. 科学技术创新,2018(35):153-154. Lin T. Discussion on the development direction of agricultural machinery fault diagnosis technology[J]. Scientific and Technological Innovation,2018(35):153-154(in Chinese).
[45] 周翔.现代农业机械故障诊断技术研究[J]. 中国农业信息,2015(1):91. Zhou X. Research on fault diagnosis technology of modern agricultural machinery[J]. China Agricultural Information,2015(1):91(in Chinese).
[46] 张钱斌.基于OBD车载自诊断系统的汽车故障诊断[J]. 淮海工学院学报(自然科学版),2013,22(3):14-17. Zhang Q B. Automobile fault diagnosis based on OBD system[J]. Journal of Huaihai Institute of Technology(Natural Science Edition),2013,22(3):14-17(in Chinese with English abstract).
[47] 雷亚国,何正嘉.混合智能故障诊断与预示技术的应用进展[J]. 振动与冲击,2011,30(9):129-135. Lei Y G,He Z J. Advances in applications of hybrid intelligent fault diagnosis and prognosis technique[J]. Journal of Vibration and Shock,2011,30(9):129-135(in Chinese with English abstract).
[48] 唐立力,陈国彬.基于MEA优化BP神经网络的农机滚动轴承故障诊断[J]. 农机化研究,2019,41(3):214-218. Tang L L,Chen G B. Fault diagnosis for rolling bearing of agricultural mechanical based on BP neural network optimized by mind evolutionary algorithm[J]. Journal of Agricultural Mechanization Research,2019,41(3):214-218(in Chinese with English abstract).
[49] 何俊.齿轮箱振动特性分析与智能故障诊断方法研究[D]. 杭州:浙江大学,2018. He J. Vibration characteristic analysis and intelligent fault diagnosis of gearboxes[D]. Hangzhou:Zhejiang University,2018(in Chinese with English abstract).
[50] Hoang D T,Kang H J. Rolling element bearing fault diagnosis using convolutional neural network and vibration image[J]. Cognitive Systems Research,2019,53:42-50.
[51] Zhu X X,Hou D N,Zhou P,et al. Rotor fault diagnosis using a convolutional neural network with symmetrized dot pattern images[J]. Measurement,2019,138:526-535.
[52] Chen J,Xu K,Wang Y F,et al. Blockage fault diagnosis method of combine harvester based on BPNN and DS evidence theory[C]//Chen X Y. Seventh International Conference on Electronics and Information Engineering. Nanjing:Proceedings of the SPIE,2017:1-9.
[53] Craessaerts G,de Baerdemaeker J,Saeys W. Fault diagnostic systems for agricultural machinery[J]. Biosystems Engineering,2010,106(1):26-36.
[54] Wu C Z,Jiang P C,Ding C,et al. Intelligent fault diagnosis of rotating machinery based on one-dimensional convolutional neural network[J]. Computers in Industry,2019,108:53-61.
[55] Guo X J,Chen L,Shen C Q. Hierarchical adaptive deep convolution neural network and its application to bearing fault diagnosis[J]. Measurement,2016,93:490-502.
[56] Zhang W,Li C H,Peng G L,et al. A deep convolutional neural network with new training methods for bearing fault diagnosis under noisy environment and different working load[J]. Mechanical Systems and Signal Processing,2018,100:439-453.
[57] Pan J,Zi Y Y,Chen J L,et al. LiftingNet:a novel deep learning network with layerwise feature learning from noisy mechanical data for fault classification[J]. IEEE Transactions on Industrial Electronics,2018,65(6):4973-4982.
[58] Ding X X,He Q B. Energy-fluctuated multiscale feature learning with deep ConvNet for intelligent spindle bearing fault diagnosis[J]. IEEE Transactions on Instrumentation and Measurement,2017,66(8):1926-1935.
[59] Ince T,Kiranyaz S,Eren L,et al. Real-time motor fault detection by 1-D convolutional neural networks[J]. IEEE Transactions on Industrial Electronics,2016,63(11):7067-7075.
[60] Wen L,Li X Y,Gao L,et al. A new convolutional neural network-based data-driven fault diagnosis method[J]. IEEE Transactions on Industrial Electronics,2018,65(7):5990-5998.
[61] Yang Y T,Zheng H L,Li Y B,et al. A fault diagnosis scheme for rotating machinery using hierarchical symbolic analysis and convolutional neural network[J]. ISA Transactions,2019,91:235-252.
[62] 高霞.基于改进SOM神经网络的农机液压系统故障诊断方法[J]. 中国农机化学报,2019,40(3):128-132. Gao X. Fault diagnosis method for hydraulic system of agricultural machinery based on improved SOM neural network[J]. Journal of Chinese Agricultural Mechanization,2019,40(3):128-132(in Chinese with English abstract).
[63] 廖应学,杨娟.机械设备的智能故障诊断方法与研究——以旋转机械为例[J]. 价值工程,2019,38(22):224-226. Liao Y X,Yang J. Intelligent fault diagnosis method and research of mechanical equipment:taking rotating machinery as an example[J]. Value Engineering,2019,38(22):224-226(in Chinese with English abstract).
[64] Xu X Z,Cao D,Zhou Y,et al. Application of neural network algorithm in fault diagnosis of mechanical intelligence[J]. Mechanical Systems and Signal Processing,2020,141:106625.
[65] 雷亚国,何正嘉,訾艳阳.基于混合智能新模型的故障诊断[J]. 机械工程学报,2008,44(7):112-117. Lei Y G,He Z J,Zi Y Y. Fault diagnosis based on novel hybrid intelligent model[J]. Chinese Journal of Mechanical Engineering,2008,44(7):112-117(in Chinese with English abstract).
[66] 李恒宾,马文朋.一种混合智能故障诊断方法及柴油机故障诊断[J]. 科学技术与工程,2012,12(21):5149-5153,5162. Li H B,Ma W P. A hybrid intelligent fault diagnosis method and fault diagnosis for diesel engine[J]. Science Technology and Engineering,2012,12(21):5149-5153,5162(in Chinese with English abstract).
[67] 张周锁,侯照文,孙闯,等. 应用粒计算的混合智能故障诊断技术研究[J]. 西安交通大学学报,2011,45(1):48-53. Zhang Z S,Hou Z W,Sun C,et al. Hybrid intelligent diagnosis technology based on granular computing[J]. Journal of Xi’an Jiaotong University,2011,45(1):48-53(in Chinese with English abstract).
[68] 钟成义,王素珍,常春.农业机械故障诊断技术研究现状及展望[J]. 中国农机化学报,2014,35(2):29-31. Zhong C Y,Wang S Z,Chang C. Review on research status for agricultural machinery fault diagnosis technology[J]. Journal of Chinese Agricultural Mechanization,2014,35(2):29-31(in Chinese with English abstract).
[69] He L F,Zhou X C,Zhang T Q. Stochastic resonance characteristic analysis of new potential function under levy noise and bearing fault detection[J]. Chinese Journal of Physics,2018,56(2):538-560.
[70] Azadeh A,Saberi M,Kazem A,et al. A flexible algorithm for fault diagnosis in a centrifugal pump with corrupted data and noise based on ANN and support vector machine with hyper-parameters optimization[J]. Applied Soft Computing,2013,13(3):1478-1485.
[71] Muralidharan V,Sugumaran V,Indira V. Fault diagnosis of monoblock centrifugal pump using SVM[J]. Engineering Science & Technology an International Journal,2014,17(3):152-157.

备注/Memo

备注/Memo:
收稿日期:2020-04-01。
基金项目:江苏省重点研发计划项目(BE2018127);江苏省农业科技自主创新资金项目[CX(19)3081]
作者简介:肖茂华,教授,硕导,研究方向为高端农机装备健康维护,E-mail:xiaomaohua@njau.edu.cn。
更新日期/Last Update: 1900-01-01