[1]时春美,朱文静,田畅,等.菊花TAS3 tasi-RNA靶基因CmARF4的鉴定及表达分析[J].南京农业大学学报,2020,43(6):1006-1014.[doi:10.7685/jnau.202001009]
 SHI Chunmei,ZHU Wenjing,TIAN Chang,et al.Identification and expression analysis of TAS3 tasi-RNA target gene CmARF4 in Chrysanthemum morifolium[J].Journal of Nanjing Agricultural University,2020,43(6):1006-1014.[doi:10.7685/jnau.202001009]
点击复制

菊花TAS3 tasi-RNA靶基因CmARF4的鉴定及表达分析()
分享到:

《南京农业大学学报》[ISSN:1000-2030/CN:32-1148/S]

卷:
43卷
期数:
2020年6期
页码:
1006-1014
栏目:
植物科学
出版日期:
2020-11-10

文章信息/Info

Title:
Identification and expression analysis of TAS3 tasi-RNA target gene CmARF4 in Chrysanthemum morifolium
作者:
时春美 朱文静 田畅 蒋甲福 宋爱萍 陈发棣 陈素梅
南京农业大学作物遗传与种质创新国家重点实验室/农业农村部景观设计重点实验室/园艺学院, 江苏 南京 210095
Author(s):
SHI Chunmei ZHU Wenjing TIAN Chang JIANG Jiafu SONG Aiping CHEN Fadi CHEN Sumei
State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs/College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
关键词:
菊花TAS3 tasi-RNACmARF4基因生长素盐胁迫
Keywords:
Chrysanthemum morifoliumTAS3 tasi-RNACmARF4 geneauxinsalinity stress
分类号:
S682.1
DOI:
10.7685/jnau.202001009
摘要:
[目的] 本文旨在鉴定菊花TAS3 tasi-RNA的靶基因生长素响应因子CmARF4,并探讨该基因的表达特性。[方法] 以菊花品种‘神马’为材料,利用高保真PCR方法克隆CmARF4基因全长,采用5’RLM-RACE技术验证CmARF4基因是否含有TAS3剪切位点,通过qPCR分析CmARF4基因在不同组织器官中和生长素处理及盐处理条件下的表达水平。[结果] CmARF4为TAS3 tasi-RNA的靶基因,其剪切位点位于TAS3 5’端的第10与第11位碱基之间。CmARF4基因包含开放阅读框(ORF)2 322 bp,编码773个氨基酸,预测其蛋白质相对分子质量为85.7×103,理论pI为6.44,且与刺菜蓟的同源性最高(78.63%)。在营养生长期,芽中CmARF4的表达量最高,茎中次之;在盛花期舌状花中CmARF4的表达量最高,其次是茎。亚细胞定位与转录激活活性分析结果显示:CmARF4蛋白定位在细胞核上,且无转录激活活性。CmARF4响应生长素处理,当萘乙酸(NAA)浓度为5 μmol·L-1时,CmARF4基因的相对表达量在12 h时明显升高;当NAA浓度为15 μmol·L-1时,CmARF4的相对表达量呈上升趋势。200 mmol·L-1 NaCl处理下,CmARF4的相对表达量在盐胁迫1 h时升至最高,之后逐渐下降。[结论] CmARF4基因为TAS3 tasi-RNA的靶基因,CmARF4的转录水平受生长素及盐处理的诱导。
Abstract:
[Objectives] The study aimed to verify if the auxin response factor CmARF4 was a target gene of TAS3 tasi-RNA in Chrysanthemum morifolium,and to explore its expression characteristics.[Methods] The full-length of CmARF4 was obtained by high fidelity PCR using chrysanthemum variety’Jinba’as plant material,and the cleavage site of TAS3 tasi-RNA in the CmARF4 gene was confirmed through 5’ RLM-RACE PCR reactions. The relative expression levels of CmARF4 in different tissues and in response to auxin and salt treatment of chrysanthemum variety’Jinba’were detected by qPCR.[Results] CmARF4 was a target gene of TAS3,and its cleavage site was located between the 10th and 11th bases of the 5’ end of TAS3. The CmARF4 had an open reading frame(ORF) of 2 322 bp encoding 773 amino acids. The predicted protein molecular weight was 85.7×103,and the theoretical isoelectric point(pI) was 6.44. Phylogenetic analysis showed that it had the closest relationship with ARF4 from Cynara cardunculus with an identity of 78.63%. CmARF4 gene had the highest expression level in bud and ray-florets during vegetative period and flowering period,followed by that in stem,respectively. Subcellular localization analysis indicated that CmARF4 protein was located in the nucleus. The CmARF4 gene had no transcriptional activity in the yeast system. The expression level of CmARF4 gene increased significantly at 12 h under 5 μmol·L-1 naphthalic acetic acid(NAA) treatment,and kept increase under 15 μmol·L-1 NAA. Under treatment with 200 mmol·L-1 NaCl,the expression level of CmARF4 increased to the highest level at 1 h,and then gradually decreased.[Conclusions] The CmARF4 gene is the target gene of TAS3 tasi-RNA in chrysanthemum. The transcription level of CmARF4 is induced by auxin and salt treatment.

参考文献/References:

[1] Arif M A,Fattash I,Ma Z,et al. DICER-LIKE3 activity in Physcomitrella patens DICER-LIKE4 mutants causes severe developmental dysfunction and sterility[J]. Molecular Plant,2012,5(6):1281-1294.
[2] Axtell M J,Snyder J A,Bartel D P. Common functions for diverse small RNAs of land plants[J]. The Plant Cell,2007,19(6):1750-1769.
[3] Xia R,Xu J,Meyers B C. The emergence,evolution,and diversification of the miR390-TAS3-ARF pathway in land plants[J]. The Plant Cell,2017,29(6):1232-1247.
[4] He F,Xu C Z,Fu X K,et al. The MicroRNA390/TRANS-ACTING SHORT INTERFERING RNA3 module mediates lateral root growth under salt stress via the auxin pathway[J]. Plant Physiology,2018,177(2):775-791.
[5] Wen F L,Yue Y,He T F,et al. Identification of miR390-TAS3-ARF pathway in response to salt stress in Helianthus tuberosus L.[J]. Gene,2020,738:144460.
[6] Lin Y L,Lai Z X,Tian Q,et al. Endogenous target mimics down-regulate miR160 mediation of ARF10,-16,and -17 cleavage during somatic embryogenesis in Dimocarpus longan Lour[J]. Frontiers in Plant Science,2015,6:956.
[7] Das S S,Yadav S,Singh A,et al. Expression dynamics of miRNAs and their targets in seed germination conditions reveals miRNA-tasiRNA crosstalk as regulator of seed germination[J]. Scientific Reports,2018,8(1):1233.
[8] German M A,Pillay M,Jeong D H,et al. Global identification of microRNA-target RNA pairs by parallel analysis of RNA ends[J]. Nature Biotechnology,2008,26(8):941-946.
[9] Livak K J,Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method[J]. Methods,2001,25(4):402-408.
[10] Hagen G,Guilfoyle T. Auxin-responsive gene expression:genes,promoters and regulatory factors[J]. Plant Molecular Biology,2002,49(3/4):373-385.
[11] Wen J,Guo P C,Ke Y Z,et al. The auxin response factor gene family in allopolyploid Brassica napus[J]. PLoS One,2019,14(4):e0214885.
[12] Wu J,Wang F Y,Cheng L,et al. Identification,isolation and expression analysis of auxin response factor(ARF)genes in Solanum lycopersicum[J]. Plant Cell Reports,2011,30(11):2059-2073.
[13] Wan S B,Li W L,Zhu Y Y,et al. Genome-wide identification,characterization and expression analysis of the auxin response factor gene family in Vitis vinifera[J]. Plant Cell Reports,2014,33:1365-1375.
[14] Li S B,Ouyang W Z,Hou X J,et al. Genome-wide identification,isolation and expression analysis of auxin response factor(ARF)gene family in sweet orange(Citrus sinensis)[J]. Frontiers in Plant Science,2015,6:119.
[15] Liu K D,Yuan C C,Li H L,et al. Genome-wide identification and characterization of auxin response factor(ARF)family genes related to flower and fruit development in papaya(Carica papaya L.)[J]. BMC Genomics,2015,16(1):901.
[16] Shi M Y,Hu X,Wei Y,et al. Genome-wide profiling of small RNAs and degradome revealed conserved regulations of miRNAs on auxin-responsive genes during fruit enlargement in peaches[J]. International Journal of Molecular Sciences,2017,18(12):2599.
[17] Hu W,Zuo J,Hou X W,et al. The auxin response factor gene family in banana:genome-wide identification and expression analyses during development,ripening,and abiotic stress[J]. Frontiers in Plant Science,2015,6:742.
[18] 李慧峰,冉昆,何平,等. 苹果生长素响应因子(ARF)基因家族全基因组鉴定及表达分析[J]. 植物生理学报,2015,51(7):1045-1054. Li H F,Ran K,He P,et al. Genome-wide identification and expression analysis of auxin response factor(ARF)gene family in apple[J]. Plant Physiology Journal,2015,51(7):1045-1054(in Chinese with English abstract).
[19] Wang S X,Shi F Y,Dong X X,et al. Genome-wide identification and expression analysis of auxin response factor(ARF)gene family in strawberry(Fragaria vesca)[J]. Journal of Integrative Agriculture,2019,18(7):1587-1603.
[20] Piya S,Shrestha S K,Binder B,et al. Protein-protein interaction and gene co-expression maps of ARFs and Aux/IAAs in Arabidopsis[J]. Frontiers in Plant Science,2014,5:744-754.
[21] Guilfoyle T J. The PB1 domain in auxin response factor and Aux/IAA proteins:a versatile protein interaction module in the auxin response[J]. The Plant Cell,2015,27(1):33-43.
[22] Wright R C,Nemhauser J L. New tangles in the auxin signaling web[J]. F1000prime Reportes,2015,7:19.
[23] Johnston S R,Garner R M,Ellis J P. Illuminating protein interactions within a repressive auxin response factor[J]. Biochemistry and Molecular Biology,2019,33:1.
[24] Xu Y X,Mao J,Chen W,et al. Identification and expression profiling of the auxin response factors(ARFs)in the tea plant[Camellia sinensis(L.)O. Kuntze]under various abiotic stresses[J]. Plant Physiology and Biochemistry,2016,98:46-56.
[25] Tiwari S B,Hagen G,Guilfoyle T. The roles of auxin response factor domains in auxin-responsive transcription[J]. The Plant Cell,2003,15(2):533-543.
[26] Wang C,Shangguan L F,Kibet K N,et al. Characterization of microRNAs identified in a table grapevine cultivar with validation of computationally predicted grapevine miRNAs by miR-RACE[J]. PLoS One,2011,6(7):e21259.
[27] Li X L,Lei M J,Yan Z Y,et al. The REL3-mediated TAS3 ta-siRNA pathway integrates auxin and ethylene signaling to regulate nodulation in Lotus japonicus[J]. New Phytologist,2014,201(2):531-544.
[28] Zabala G,Campos E,Varala K K,et al. Divergent patterns of endogenous small RNA populations from seed and vegetative tissues of Glycine max[J]. BMC Plant Biology,2012,12(1):177.
[29] Song S W,Hao L Y,Zhao P,et al. Genome-wide identification,expression profiling and evolutionary analysis of auxin response factor gene family in potato(Solanum tuberosum Group Phureja)[J]. Scientific Reports,2019,9(1):1755.
[30] 李慧峰,张文芹,董庆龙,等. 苹果生长素响应因子(MdARF)基因克隆与表达分析[J]. 果树学报,2018,35(10):1170-1181. Li H F,Zhang W Q,Dong Q L,et al. Cloning,sequencing and expression analysis of auxin response factors(MdARF)in apple[J]. Journal of Fruit Science,2018,35(10):1170-1181(in Chinese with English abstract).
[31] Okushima Y,Overvoorde P J,Arima K,et al. Functional genomic analysis of the AUXIN RESPONSE FACTOR gene family members in Arabidopsis thaliana:unique and overlapping functions of ARF7 and ARF19[J]. The Plant Cell,2005,17(2):444-463.
[32] Ha S,Tran L S. Understanding plant responses to phosphorus starvation for improvement of plant tolerance to phosphorus deficiency by biotechnological approaches[J]. Critical Reviews in Biotechnology,2014,34(1):16-30.
[33] Matsui A,Mizunashi K,Tanaka M,et al. TasiRNA-ARF pathway moderates floral architecture in Arabidopsis plants subjected to drought stress[J]. BioMed Research International,2014,11:303-451.

相似文献/References:

[1]杨伟,陈发棣,陈素梅,等.不同菊花品种不同开花阶段舌装花耐热性比较[J].南京农业大学学报,2011,34(2):47.[doi:10.7685/j.issn.1000-2030.2011.02.009]
 YANG Wei,CHEN Fa-di,CHEN Su-mei,et al.Comparison of heat tolerance of ray florets of different chrysanthemum cultivars at different flowering stages[J].Journal of Nanjing Agricultural University,2011,34(6):47.[doi:10.7685/j.issn.1000-2030.2011.02.009]
[2]杨雪萌,房伟民,陈发棣,等.两个菊花品种扦插生根过程及其插穗碳氮营养和内源激素的变化[J].南京农业大学学报,2010,33(4):19.[doi:10.7685/j.issn.1000-2030.2010.04.004]
 YANG Xue-meng,FANG Wei-min,CHEN Fa-di,et al.Cuttings rooting process and changes in carbohydrate,nitrogen and endogenous hormone levels during the rooting of two chrysanthemum cultivars[J].Journal of Nanjing Agricultural University,2010,33(6):19.[doi:10.7685/j.issn.1000-2030.2010.04.004]
[3]张飞,谢伟,陈发棣,等.中国菊花品种初选核心种质的代表性检验[J].南京农业大学学报,2009,32(2):47.[doi:10.7685/j.issn.1000-2030.2009.02.010]
 ZHANG Fei,XIE Wei,CHEN Fa-di,et al.Representativeness test for candidate core collection of chrysanthemum (Dendranthema×grandiflorum) in China[J].Journal of Nanjing Agricultural University,2009,32(6):47.[doi:10.7685/j.issn.1000-2030.2009.02.010]
[4]丁玲,陈发棣,腾年军,等.野生及不同用途菊花的同工酶分析[J].南京农业大学学报,2008,31(3):37.[doi:10.7685/j.issn.1000-2030.2008.03.007]
 DING Ling,CHEN Fa-di,TENG Nian-jun,et al.Isozyme analysis of wild species and cultivars with different uses in Dendranthema grandiflorum[J].Journal of Nanjing Agricultural University,2008,31(6):37.[doi:10.7685/j.issn.1000-2030.2008.03.007]
[5]李鸿渐,张效平,王彭伟.切花菊新品种选育的研究[J].南京农业大学学报,1991,14(3):31.[doi:10.7685/j.issn.1000-2030.1991.03.007]
 Li Hongjian,Zhang Xiaoping,Wang Pengwei.STUDIES ON BREEDING OF NEW CULTIVARS OF CHRYSANTHEMUM FOR CUT-FLOWERS[J].Journal of Nanjing Agricultural University,1991,14(6):31.[doi:10.7685/j.issn.1000-2030.1991.03.007]
[6]李鸿渐,邵健文.中国菊花品种资源的调查收集与分类[J].南京农业大学学报,1990,13(1):30.[doi:10.7685/j.issn.1000-2030.1990.01.006]
 Li Hongjian Shao Jianwen.INVESTIGATION,COLLECTION AND CLASSIFICATION OF CHRYSANTHEMUM CULTIV ARS IN CHINA[J].Journal of Nanjing Agricultural University,1990,13(6):30.[doi:10.7685/j.issn.1000-2030.1990.01.006]
[7]侯喜林.菊花花瓣培养不定芽的形成及植株再生[J].南京农业大学学报,1990,13(3):42.[doi:10.7685/j.issn.1000-2030.1990.03.007]
 Hou Xilin.FORMATION OF ADVENTITIOUS BUDS AND PLANT REGENERATION FROM PETAL SEGMENT CULTURE OF CHRYSANTHEMUMS IN VITRO[J].Journal of Nanjing Agricultural University,1990,13(6):42.[doi:10.7685/j.issn.1000-2030.1990.03.007]
[8]张飞,陈发棣*,房伟民,等.菊花花期性状的杂种优势与混合遗传分析[J].南京农业大学学报,2011,34(4):31.[doi:10.7685/j.issn.1000-2030.2011.04.006]
 ZHANG Fei,CHEN Fa-di *,FANG Wei-min,et al.Heterosis and mixed genetic analysis for florescence-related traits of chrysanthemum[J].Journal of Nanjing Agricultural University,2011,34(6):31.[doi:10.7685/j.issn.1000-2030.2011.04.006]
[9]孙娅,陈素梅,陈发棣,等.菊花近缘种属植物抗蚜性机制研究[J].南京农业大学学报,2012,35(3):25.[doi:10.7685/j.issn.1000-2030.2012.03.005]
 SUN Ya,CHEN Su-mei,CHEN Fa-di,et al.Studies on the mechanisms involved in resistance of closely related species of chrysanthemum to aphid[J].Journal of Nanjing Agricultural University,2012,35(6):25.[doi:10.7685/j.issn.1000-2030.2012.03.005]
[10]楼望淮,蒋甲福,陈素梅,等.菊花B病毒外壳蛋白互作蛋白的筛选[J].南京农业大学学报,2013,36(4):43.[doi:10.7685/j.issn.1000-2030.2013.04.008]
 LOU Wanghuai,JIANG Jiafu,CHEN Sumei,et al.Screening of proteins interacting with the coat protein of Chrysanthemum virus B[J].Journal of Nanjing Agricultural University,2013,36(6):43.[doi:10.7685/j.issn.1000-2030.2013.04.008]

备注/Memo

备注/Memo:
收稿日期:2020-01-06。
基金项目:国家自然科学基金项目(31972451);国家重点研发计划项目(2018YFD1000402);江苏省农业科技自主创新资金项目[CX(18)2020]
作者简介:时春美,硕士研究生。
通信作者:陈素梅,教授,主要从事菊花遗传育种与分子生物学研究,E-mail:chensm@njau.edu.cn。
更新日期/Last Update: 1900-01-01