[1]王威,冯坤,王晓萌,等.施氏矿物和水铁矿对砷(Ⅲ)吸附性能的比较研究[J].南京农业大学学报,2020,43(6):1116-1123.[doi:10.7685/jnau.202002017]
 WANG Wei,FENG Kun,WANG Xiaomeng,et al.Comparison of arsenite adsorption by Schwertmannite and ferrihydrite[J].Journal of Nanjing Agricultural University,2020,43(6):1116-1123.[doi:10.7685/jnau.202002017]
点击复制

施氏矿物和水铁矿对砷(Ⅲ)吸附性能的比较研究()
分享到:

《南京农业大学学报》[ISSN:1000-2030/CN:32-1148/S]

卷:
43卷
期数:
2020年6期
页码:
1116-1123
栏目:
生物与环境
出版日期:
2020-11-10

文章信息/Info

Title:
Comparison of arsenite adsorption by Schwertmannite and ferrihydrite
作者:
王威 冯坤 王晓萌 王茹 梁剑茹 周立祥
南京农业大学资源与环境科学学院, 江苏 南京 210095
Author(s):
WANG Wei FENG Kun WANG Xiaomeng WANG Ru LIANG Jianru ZHOU Lixiang
College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
关键词:
施氏矿物水铁矿As(Ⅲ)吸附
Keywords:
SchwertmanniteferrihydriteAs(Ⅲ)adsorption
分类号:
X703
DOI:
10.7685/jnau.202002017
摘要:
[目的] 本文主要探究施氏矿物(Sch)和水铁矿(Fh)对As(Ⅲ)的吸附差异。[方法] 分别使用生物和化学方法合成施氏矿物和水铁矿,通过吸附动力学和吸附等温模型,比较2种矿物对As(Ⅲ)的吸附效果,同时探究pH值、共存离子对2种矿物吸附As(Ⅲ)的影响。[结果] 施氏矿物的吸附速率常数k1为0.013 9 min-1,远大于水铁矿的0.001 9 min-1,且吸附过程符合伪一级动力学,说明施氏矿物对As(Ⅲ)吸附是一个快速的过程。吸附等温模型拟合结果表明,2种矿物对As(Ⅲ)的吸附主要为单层吸附。在中性条件下,施氏矿物对As(Ⅲ)的吸附量为165.73 mg·g-1,大于水铁矿的133.50 mg·g-1。施氏矿物吸附的最佳pH值为6~12,而水铁矿的为6~8。共存离子对水铁矿吸附过程影响更小。水铁矿吸附As(Ⅲ)的主要机制为表面羟基的络合配位作用,而施氏矿物对As(Ⅲ)的吸附主要是As(Ⅲ)与矿物表面金属羟基的表面络合、As(Ⅲ)与矿物表面及隧道结构内SO42-的配位体交换。[结论] 施氏矿物对As(Ⅲ)的吸附性能优于水铁矿,是一种高效的修复砷污染水体的吸附材料。
Abstract:
[Objectives] The purpose of this paper was to explore the difference in adsorption of As(Ⅲ) between Schwertmannite(Sch) and ferrihydrite(Fh).[Methods] The Sch and Fh were synthesized by a biological and chemical method,respectively. The adsorption effects of As(Ⅲ) on the two minerals were compared through adsorption kinetics and adsorption isotherm models. The effects of pH and coexisting ions on the adsorption of As(Ⅲ) by two minerals were also investigated.[Results] The adsorption rate constant(k1) of Sch was 0.013 9 min-1,which was much larger than that of Fh(0.001 9 min-1). The adsorption process for Sch followed pseudo-first-order kinetic,indicating that As(Ⅲ) adsorption was a fast process. The fitting results by the two adsorption isotherm models showed that the adsorption of As(Ⅲ) mainly occurred on minerals’ surface. Under neutral conditions,the adsorption capacity of As(Ⅲ) by Sch was 165.73 mg·g-1,which was greater than that of Fh(133.50 mg·g-1). Further studies found that the optimal pH range for Sch adsorption was 6-12,and 6-8 for Fh. However,the presence of coexisting ions produced negligible impact on the adsorption process by Fh. The main mechanism for As(Ⅲ) adsorption by Fh was the complex coordination of surface hydroxyl groups,while As(Ⅲ) adsorption by Sch was mainly the surface complexation of As(Ⅲ) with metal hydroxyl groups on the surface of minerals,As(Ⅲ) exchange with SO42- on the surface of minerals and in the tunnel structure.[Conclusions] The adsorption performance of Sch to As(Ⅲ) was better than that of Fh. Sch was a high-efficiency repair material for arsenic polluted water.

参考文献/References:

[1] Mandal B K,Suzuki K T. Arsenic round the world:a review[J]. Talanta,2002,58(1):201-235.
[2] 冯树屏. 砷的分析化学[M]. 北京:中国环境科学出版社,1986. Feng S P. Analytical Chemistry of Arsenic[M]. Beijing:China Environmental Science Press,1986(in Chinese).
[3] Jang M,Chen W F,Cannon F S. Preloading hydrous ferric oxide into granular activated carbon for arsenic removal[J]. Environmental Science & Technology,2008,42(9):3369-3374.
[4] 吴灿. 铁基纳米材料去除水中低浓度砷性能和机理研究[D]. 广州:华南理工大学,2017. Wu C. Adsorption performance and mechanism of iron-based nano-materials towards low concentration arsenic in water[D]. Guangzhou:South China University of Technology,2017(in Chinese with English abstract).
[5] 陈婷,朱志良. 铁基水处理材料除砷技术的研究进展[J]. 化学通报,2018,81(10):880-889. Chen T,Zhu Z L. Research progress in arsenic removal technology of iron-based water treatment materials[J]. Chemistry,2018,81(10):880-889(in Chinese).
[6] J?nsson J,Persson P,Sj?berg S,et al. Schwertmannite precipitated from acid mine drainage:phase transformation,sulphate release and surface properties[J]. Applied Geochemistry,2005,20(1):179-191.
[7] 邵金秋,温其谦,阎秀兰,等. 天然含铁矿物对砷的吸附效果及机制[J]. 环境科学,2019,40(9):4072-4080. Shao J Q,Wen Q Q,Yan X L,et al. Adsorption and mechanism of arsenic by natural iron-containing minerals[J]. Environmental Science,2019,40(9):4072-4080(in Chinese with English abstract).
[8] Liao Y H,Liang J R,Zhou L X. Adsorptive removal of As(Ⅲ)by biogenic schwertmannite from simulated As-contaminated groundwater[J]. Chemosphere,2011,83(3):295-301.
[9] 马玉玲,马杰,陈雅丽,等. 水铁矿及其胶体对砷的吸附与吸附形态[J]. 环境科学,2018,39(1):179-186. Ma Y L,Ma J,Chen Y L,et al. Arsenic adsorption and its species on ferrihydrite and ferrihydrite colloid[J]. Chinese Journal of Environmental Science,2018,39(1):179-186(in Chinese with English abstract).
[10] Bai S Y,Xu Z H,Wang M,et al. Both initial concentrations of Fe(Ⅱ)and monovalent cations jointly determine the formation of biogenic iron hydroxysulfate precipitates in acidic sulfate-rich environments[J]. Materials Science and Engineering:C,2012,32(8):2323-2329.
[11] Schwertmann U,Cornell R M. Iron Oxides in the Laboratory:Preparation and Characterization[M]. Weinheim:EILEY-VCH,2008.
[12] 丁秘,康文晶,冯程龙,等. 人工合成水铁矿对水中六价铬的吸附特征研究[J]. 工业水处理,2017,37(2):29-33. Ding M,Kang W J,Feng C L,et al. Research on the adsorption characteristics of synthetic ferrihydrite for hexavalent chromiumon in water[J]. Industrial Water Treatment,2017,37(2):29-33(in Chinese).
[13] Storck S,Bretinger H,Maier W F. Characterization of micro- and mesoporous solids by physisorption methods and pore-size analysis[J]. Applied Catalysis A:General,1998,174(1/2):137-146.
[14] Zhang Z,Guo G L,Li X T,et al. Effects of hydrogen-peroxide supply rate on schwertmannite microstructure and chromium(Ⅵ)adsorption performance[J]. Journal of Hazardous Materials,2019,367:520-528.
[15] 谢越,周立祥. 生物成因次生铁矿物对酸性矿山废水中三价砷的吸附[J]. 土壤学报,2012,49(3):481-490. Xie Y,Zhou L X. Thermodynamics and kinetics of adsorption of arsenite in acid mining drainage by biogenic secondary iron minerals[J]. Acta Pedologica Sinica,2012,49(3):481-490(in Chinese with English abstract).
[16] Chang M Y,Juang R S. Adsorption of tannic acid,humic acid,and dyes from water using the composite of chitosan and activated clay[J]. Journal of Colloid and Interface Science,2004,278(1):18-25.
[17] 韩一杰. 多元金属复合硫氧化物的制备及其对水中As(Ⅲ)和As(Ⅴ)吸附去除的研究[D]. 南京:南京农业大学,2018. Han Y J. Synthesis of poly-metal complex oxysulfide:a novel adsorbent for arsenic removal from solution[D]. Nanjing:Nanjing Agricultural University,2018(in Chinese with English abstract).
[18] 孙林. 含铁矿物对As(Ⅲ)和As(Ⅴ)的吸附及氧化还原转化研究[D]. 合肥:安徽农业大学,2015. Sun L. Adsorption and oxidation-reduction of As(Ⅲ)and As(Ⅴ)by iron-bearing minerals[D]. Hefei:Anhui Agricultural University,2015(in Chinese with English abstract).
[19] Song J,Jia S Y,Ren H T,et al. Application of a high-surface-area schwertmannite in the removal of arsenate and arsenite[J]. International Journal of Environmental Science and Technology,2015,12(5):1559-1568.
[20] 常春英,滑晓赞,吕贻忠. 氧化铁对腐殖酸的吸附机制研究[J]. 中国农业大学学报,2010,15(1):79-83. Chang C Y,Hua X Z,Lü Y Z. Sorption mechanism of humic acid on iron oxide minerals[J]. Journal of China Agricultural University,2010,15(1):79-83(in Chinese with English abstract).
[21] Namasivayam C,Senthilkumar S. Removal of arsenic(Ⅴ)from aqueous solution using industrial solid waste:adsorption rates and equilibrium studies[J]. Industrial & Engineering Chemistry Research,1998,37(12):4816-4822.
[22] 马红梅,朱志良,张荣华,等. β-FeO(OH)对水中砷的吸附作用[J]. 同济大学学报(自然科学版),2007,35(12):1656-1660. Ma H M,Zhu Z L,Zhang R H,et al. Adsorption study of As(Ⅴ)from water on β-FeO(OH)[J]. Journal of Tongji University(Natural Science Edition),2007,35(12):1656-1660(in Chinese with English abstract).
[23] Mazzetti L,Thistlethwaite P J. Raman spectra and thermal transformations of ferrihydrite and schwertmannite[J]. Journal of Raman Spectroscopy,2002,33(2):104-111.
[24] Raven K P,Jain A A,Loeppert R H. Arsenite and arsenate adsorption on ferrihydrite:kinetics,equilibrium and adsorption envelopes[J]. Environmental Science & Technology,1998,32(3):344-349.
[25] Bigham J M,Schwertmann U,Traina S J,et al. Schwertmannite and the chemical modeling of iron in acid sulfate waters[J]. Geochimica et Cosmochimica Acta,1996,60(12):2111-2121.
[26] Regenspurg S,Peiffer S. Arsenate and chromate incorporation in schwertmannite[J]. Applied Geochemistry,2005,20(6):1226-1239.
[27] 李浙英,梁剑茹,柏双友,等. 生物与化学成因施氏矿物吸附去除水中As(Ⅲ)效果的比较研究[J]. 环境科学学报,2011,31(5):912-918. Li Z Y,Liang J R,Bai S Y,et al. Removal of As(Ⅲ)in simulated groundwater through adsorption by biosynthesized or chemosynthesized schwertmannite[J]. Acta Scientiae Circumstantiae,2011,31(5):912-918(in Chinese with English abstract).
[28] 张昱,豆小敏,杨敏,等. 砷在金属氧化物/水界面上的吸附机制Ⅰ:金属表面羟基的表征和作用[J]. 环境科学学报,2006,26(10):1586-1591. Zhang Y,Dou X M,Yang M,et al. Adsorption mechanism of arsenic on metal oxide adsorbentⅠ:characterization and the role of metal surface hydroxyl groups[J]. Acta Scientiae Circumstantiae,2006,26(10):1586-1591(in Chinese with English abstract).
[29] 廖岳华. 施氏矿物的生物合成及去除水中砷的效果与机理研究[D]. 南京:南京农业大学,2008. Liao Y H. Biosynthesis of schwertmannite and its efficiency and mechanism of arsenite removal from aqueous solutions[D]. Nanjing:Nanjing Agricultural University,2008(in Chinese with English abstract).
[30] 霍丽娟. 水铁矿纳米材料对土壤中砷的吸附固定及其稳定化反应机制[D]. 北京:中国农业科学院,2017. Huo L J. Study on the mechanisms of arsenic sorption and stabilization in soils using ferrihydrite nanoparticles[D]. Beijing:Chinese Academy of Agricultural Sciences,2017(in Chinese with English abstract).

相似文献/References:

[1]李瑛,吴振禹,周立祥,等.施氏矿物和有机酸共存体系中孔雀石绿的多相光催化降解[J].南京农业大学学报,2012,35(3):127.[doi:10.7685/j.issn.1000-2030.2012.03.022]
 LI Ying,WU Zhen-yu,ZHOU Li-xiang,et al.Heterogeneous photocatalytic degradation of malachite green in the presence of schwertmannite and organic acids[J].Journal of Nanjing Agricultural University,2012,35(6):127.[doi:10.7685/j.issn.1000-2030.2012.03.022]
[2]古芸,郑赛,曲峰龙,等.水铁矿对玉米生长及其抗氧化系统的影响[J].南京农业大学学报,2018,41(5):860.[doi:10.7685/jnau.201802022]
 GU Yun,ZHENG Sai,QU Fenglong,et al.Effect of ferrihydrite on maize growth and antioxidant system[J].Journal of Nanjing Agricultural University,2018,41(6):860.[doi:10.7685/jnau.201802022]

备注/Memo

备注/Memo:
收稿日期:2020-02-17。
基金项目:国家自然科学基金项目(41977338,21637003)
作者简介:王威,硕士研究生。
通信作者:周立祥,教授,研究方向为固废处理、酸性矿山废水和高浓度有机污水处理以及土壤污染与修复等,E-mail:lxzhou@njau.edu.cn。
更新日期/Last Update: 1900-01-01