[1]潘磊庆,方莉,周彬静,等.光学参数测量系统和原理及其在果蔬品质检测方面的研究进展[J].南京农业大学学报,2021,44(3):401-411.[doi:10.7685/jnau.202007009]
 PAN Leiqing,FANG Li,ZHOU Binjing,et al.System and principle of optical properties measurement and advances on quality detection of fruits and vegetables[J].Journal of Nanjing Agricultural University,2021,44(3):401-411.[doi:10.7685/jnau.202007009]
点击复制

光学参数测量系统和原理及其在果蔬品质检测方面的研究进展()
分享到:

《南京农业大学学报》[ISSN:1000-2030/CN:32-1148/S]

卷:
44卷
期数:
2021年3期
页码:
401-411
栏目:
综述
出版日期:
2021-05-10

文章信息/Info

Title:
System and principle of optical properties measurement and advances on quality detection of fruits and vegetables
作者:
潘磊庆 方莉 周彬静 张斌 彭菁 屠康
南京农业大学食品科学技术学院, 江苏 南京 210095
Author(s):
PAN Leiqing FANG Li ZHOU Binjing ZHANG Bin PENG Jing TU Kang
College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
关键词:
光传输模型光学参数品质检测果蔬组织
Keywords:
light transfer modeloptical parameterquality detectionfruits and vegetablestissues
分类号:
TS255
DOI:
10.7685/jnau.202007009
摘要:
近年来,近红外光谱分析技术在果蔬品质检测方面得到广泛应用,但由于建模过程不可见、吸收与散射特性无法分离等因素的影响,常出现预测模型不稳定、精度难以提高及适应性差的问题。要解决这些问题,有必要对光子和果蔬组织的互作机制进行研究,互作过程可由光学特性参数(吸收系数和散射系数)来表征。为此,需要对果蔬组织的光学特性参数进行准确测量。本文综述了光传输理论及新兴光学特性参数测量技术(空间分辨、时间分辨、频域分辨和积分球技术)的系统(仪器设置和数学算法分析)和机制,并对这4种技术在果蔬组织光学参数测量及品质预测、缺陷识别等方面的最新应用进行重点论述,旨在为果蔬光学特性的深入研究和技术开发提供参考。
Abstract:
In recent years,the near infrared reflectance spectroscopy technology(NIRS) had been widely used in the quality detection of fruits and vegetables. However,due to the invisible effects of the modeling process and without being able to separate the effect of absorption and scattering,NIRS had the shortcomings of poor stability,poor accuracy and poor adaptability. To solve these problems,it was necessary to make clear the interaction mechanism between photons and tissues of fruits and vegetables. The interaction process could be characterized by optical parameters(absorption coefficient and scattering coefficient). Thus,the measurement of optical absorption and scattering properties had the potential of providing more useful information for the quality evaluation of fruits and vegetables. This article reviewed the light transmission theory and the system settings(instruments and mathematical algorithm analysis) of optical properties measurement technologies,including spatial resolved,time resolved,frequency domain resolved,and integrating sphere technology. Moreover,this review provided an overview of advanced applications of measurement of optical properties for measuring optical parameters,quality assessment,identification of defect,and others on fruits and vegetables,which would provide reference for the optical property measurement techniques development and the future research of fruits and vegetables.

参考文献/References:

[1] 刘燕德,陈兴苗. 光学特性参数的测量方法在水果组织中的应用[J]. 农产品加工·学刊,2006(10):90-94. Liu Y D,Chen X M. Application of measurement methods for optical property parameters in fruit tissue[J]. Academic Periodical of Farm Products Processing,2006(10):90-94(in Chinese with English abstract).
[2] Qin J W,Lu R F. Measurement of the optical properties of fruits and vegetables using spatially resolved hyperspectral diffuse reflectance imaging technique[J]. Postharvest Biology and Technology,2008,49(3):355-365.
[3] Birth G S. The light scattering properties of foods[J]. Journal of Food Science,1978,43(3):916-925.
[4] Cen H Y,Lu R F,Mendoza F A. Analysis of absorption and scattering spectra for assessing the internal quality of apple fruit[J]. Acta Horticulturae,2012,945:181-188.
[5] Zerbini E P,Vanoli M,Rizzolo A,et al. Optical properties,ethylene production and softening in mango fruit[J]. Postharvest Biology and Technology,2015,101:58-65.
[6] Nicola? B M,Verlinden B E,Desmet M,et al. Time-resolved and continuous wave NIR reflectance spectroscopy to predict soluble solids content and firmness of pear[J]. Postharvest Biology and Technology,2008,47(1):68-74.
[7] Adebayo S E,Hashim N,Abdan K,et al. Prediction of quality attributes and ripeness classification of bananas using optical properties[J]. Scientia Horticulturae,2016,212:171-182.
[8] Liu D Y,Guo W C,Li Q Q,et al. Relationship of the bulk optical properties in 950-1650 nm wavelength range with internal quality and microstructure of kiwifruit during maturation[J]. Biosystems Engineering,2019,184:45-54.
[9] López-Maestresalas A,Aernouts B,Beers R,et al. Bulk optical properties of potato flesh in the 500-1900 nm range[J]. Food and Bioprocess Technology,2016,9(3):463-470.
[10] Huang Y P,Lu R F,Hu D,et al. Quality assessment of tomato fruit by optical absorption and scattering properties[J]. Postharvest Biology and Technology,2018,143:78-85.
[11] He X M,Fu X P,Li T W,et al. Spatial frequency domain imaging for detecting bruises of pears[J]. Journal of Food Measurement and Characterization,2018,12(2):1266-1273.
[12] Prahl S A,van Gemert M J C,Welch A J. Determining the optical properties of turbid media by using the adding-doubling method[J]. Applied Optics,1993,32(4):559-568.
[13] 胡栋. 空间频域成像技术测量单双层农产品组织光学特性的研究[D]. 杭州:浙江大学,2018. Hu D. Measuring optical properties of one-layer and two-layer agro-product tissues using spatial-frequency domain imaging technique[D]. Hangzhou:Zhejiang University,2018(in Chinese with English abstract).
[14] Reynolds L,Johnson C,Ishimaru A. Diffuse reflectance from a finite blood medium:applications to the modeling of fiber optic catheters[J]. Applied Optics,1976,15(9):2059-2067.
[15] Patterson M S,Moulton J D,Wilson B C,et al. Frequency-domain reflectance for the determination of the scattering and absorption properties of tissue[J]. Applied Optics,1991,30(31):4474-4476.
[16] Lu R F,van Beers R,Saeys W,et al. Measurement of optical properties of fruits and vegetables:a review[J]. Postharvest Biology and Technology,2020,159:111003.
[17] Watté R,Aernouts B,van Beers R,et al. Modeling the propagation of light in realistic tissue structures with MMC-fpf:a meshed Monte Carlo method with free phase function[J]. Optics Express,2015,23(13):17467-17486.
[18] Lu R F. Light Scattering Technology for Food Property,Quality and Safety Assessment[M]. New York:CRC Press,2017.
[19] Zhang M Y,Li C Y,Yang F Z. Optical properties of blueberry flesh and skin and Monte Carlo multi-layered simulation of light interaction with fruit tissues[J]. Postharvest Biology and Technology,2019,150:28-41.
[20] Pickering J W,Prahl S A,van Wieringen N,et al. Double-integrating-sphere system for measuring the optical properties of tissue[J]. Applied Optics,1993,32(4):399-410.
[21] 方振欢. 用于水果组织光传输特性检测的单积分球系统研制及应用[D]. 杭州:浙江大学,2015. Fang Z H. Development and application of a single integrating sphere system for detecting optical properties of fruit tissue[D]. Hangzhou:Zhejiang University,2015(in Chinese with English abstract).
[22] Trong N N D,Rizzolo A,Herremans E,et al. Optical properties-microstructure-texture relationships of dried apple slices:spatially resolved diffuse reflectance spectroscopy as a novel technique for analysis and process control[J]. Innovative Food Science & Emerging Technologies,2014,21:160-168.
[23] Fabbri F,Franceschini M A,Fantini S. Characterization of spatial and temporal variations in the optical properties of tissuelike media with diffuse reflectance imaging[J]. Applied Optics,2003,42(16):3063.
[24] Peng Y K,Lu R F. Analysis of spatially resolved hyperspectral scattering images for assessing apple fruit firmness and soluble solids content[J]. Postharvest Biology and Technology,2008,48(1):52-62.
[25] Huang Y P,Lu R F,Chen K J. Development of a multichannel hyperspectral imaging probe for property and quality assessment of horticultural products[J]. Postharvest Biology and Technology,2017,133:88-97.
[26] Qin J W,Lu R F. Hyperspectral diffuse reflectance for determination of the optical properties of milk and fruit and vegetable juice[C]//Chen Y R. Optical Sensors and Sensing Systems for Natural Resources and Food Safety and Quality. San Jose,California,USA:Proc SPIE 5996,2005:59960Q.
[27] 王爱臣. 空间分辨高光谱成像技术测量单/双层农产品组织光学特性的研究[D]. 杭州:浙江大学,2017. Wang A C. Measuring the optical properties of one/two layer tissue of agro-products using hyperspectral imaging-based spatially-resolved technique[D]. Hangzhou:Zhejiang University,2017(in Chinese with English abstract).
[28] Peng Y K,Lu R F. Improving apple fruit firmness predictions by effective correction of multispectral scattering images[J]. Postharvest Biology and Technology,2006,41(3):266-274.
[29] 余江胜,骆清铭,阮玉. 时间分辨技术测量高散射介质光学参量[J]. 光子学报,2003,32(7):860-863. Yu J S,Luo Q M,Ruan Y. Optical properties measurement of diffusion media with time resolved technique[J]. Acta Photonica Sinica,2003,32(7):860-863(in Chinese with English abstract).
[30] 张连顺,张春平,王新宇,等. 生物组织光学特性参数无损测量实验研究[J]. 光电子·激光,2004,15(6):746-749. Zhang L S,Zhang C P,Wang X Y,et al. Experiment research for non-Invasive measurement of optical parameters of biological tissues[J]. Journal of Optoelectronics·Laser,2004,15(6):746-749(in Chinese with English abstract).
[31] Palmer G M,Ramanujam N. Monte Carlo-based inverse model for calculating tissue optical properties. Part I:Theory and validation on synthetic phantom[J]. Applied Optics,2006,45(5):1062-1071.
[32] Cuccia D J,Bevilacqua F,Durkin A J,et al. Quantitation and mapping of tissue optical properties using modulated imaging[J]. Journal of Biomedical Optics,2009,14(2):024012.
[33] Vanoli M,Rizzolo A,Grassi M,et al. Time-resolved reflectance spectroscopy nondestructively reveals structural changes in ‘Pink Lady?’ apples during storage[J]. Procedia Food Science,2011,1:81-89.
[34] Valero C,Ruiz-Altisent M,Cubeddu R. Detection of internal quality in kiwi with time-domain diffuse reflectance spectroscopy[J]. Applied Engineering in Agriculture,2004,20(2):223-230.
[35] Vanoli M,Rizzolo A,Grassi M,et al. Studies on classification models to discriminate ‘Braeburn’ apples affected by internal browning using the optical properties measured by time-resolved reflectance spectroscopy[J]. Postharvest Biology and Technology,2014,91:112-121.
[36] Rizzolo A,Vanoli M,Zerbini P E,et al. Influence of cold storage time on the softening prediction in ‘Spring Bright’ nectarines[J]. Acta Horticulturae,2010,877:1395-1402.
[37] He X M,Fu X P,Rao X Q,et al. Assessing firmness and SSC of pears based on absorption and scattering properties using an automatic integrating sphere system from 400 to 1150 nm[J]. Postharvest Biology and Technology,2016,121:62-70.
[38] Zhang S,Wu X H,Zhang S H,et al. An effective method to inspect and classify the bruising degree of apples based on the optical properties[J]. Postharvest Biology and Technology,2017,127:44-52.
[39] Rowe P I,Künnemeyer R,Mcglone A,et al. Relationship between tissue firmness and optical properties of ‘Royal Gala ’apples from 400 to 1050 nm[J]. Postharvest Biology and Technology,2014,94:89-96.
[40] Wang W,Li C,Gitaitis R D. Optical properties of healthy and diseased onion tissues in the visible and near-infrared spectral region[J]. Transactions of the ASABE,2014,57(6):1771-1782.
[41] Zhu Q B,He C L,Lu R F,et al. Ripeness evaluation of ‘Sun Bright’ tomato using optical absorption and scattering properties[J]. Postharvest Biology and Technology,2015,103:27-34.
[42] Zhu Q B,Guan J Y,Huang M,et al. Predicting bruise susceptibility of ‘Golden Delicious’ apples using hyperspectral scattering technique[J]. Postharvest Biology and Technology,2016,114:86-94.
[43] Mollazade K,Arefi A. Optical analysis using monochromatic imaging-based spatially-resolved technique capable of detecting mealiness in apple fruit[J]. Scientia Horticulturae,2017,225:589-598.
[44] Lorente D,Zude M,Idler C,et al. Laser-light backscattering imaging for early decay detection in citrus fruit using both a statistical and a physical model[J]. Journal of Food Engineering,2015,154:76-85.
[45] Trong N N D,Erkinbaev C,Tsuta M,et al. Spatially resolved diffuse reflectance in the visible and near-infrared wavelength range for non-destructive quality assessment of ‘Braeburn’ apples[J]. Postharvest Biology and Technology,2014,91:39-48.
[46] Anderson E R,Cuccia D J,Durkin A J. Detection of bruises on golden delicious apples using spatial-frequency-domain imaging[C]//Tuan V,Grundfest W S,Benaron D A. Advanced Biomedical and Clinical Diagnostic Systems Ⅴ. San Jose,California,USA:Proc SPIE 6430,2007:643010.
[47] Hu D,Fu X P,He X M,et al. Noncontact and wide-field characterization of the absorption and scattering properties of apple fruit using spatial-frequency domain imaging[J]. Scientific Reports,2016,6(1):37920.
[48] van Beers R,Aernouts B,Watté R,et al. Effect of maturation on the bulk optical properties of apple skin and cortex in the 500-1850 nm wavelength range[J]. Journal of Food Engineering,2017,214:79-89.
[49] Hu D,Fu X P,Ying Y B. Characterizing pear tissue with optical absorption and scattering properties using spatially-resolved diffuse reflectance[J]. Journal of Food Measurement and Characterization,2017,11(2):930-936.
[50] Cen H Y,Lu R F,Mendoza F A. Assessing multiple quality attributes of peaches using optical absorption and scattering properties[J]. Transactions of the ASABE,2012,55(2):647-657.
[51] Qin J W,Lu R F. Monte Carlo simulation for quantification of light transport features in apples[J]. Computers and Electronics in Agriculture,2009,68(1):44-51.
[52] Seifert B,Zude M,Spinelli L,et al. Optical properties of developing pip and stone fruit reveal underlying structural changes[J]. Physiologia Plantarum,2015,153(2):327-336.
[53] 马晨,冯莉,魏康丽,等. 桃果实采后光学特性与硬度及果胶物质的关系[J]. 南京农业大学学报,2020,43(2):347-355. DOI:10.7685/jnau.201905054. Ma C,Feng L,Wei K L,et al. Relationship between the optical properties and firmness,pectin constitution in peach flesh during post-harvest storage[J]. Journal of Nanjing Agricultural University,2020,43(2):347-355(in Chinese with English abstract).
[54] Wei K L,Ma C,Sun K,et al. Relationship between optical properties and soluble sugar contents of apple flesh during storage[J]. Postharvest Biology and Technology,2020,159:111021.
[55] Wang Z,van Beers R,Aernouts B,et al. Microstructure affects light scattering in apples[J]. Postharvest Biology and Technology,2020,159:110996.
[56] Ma C,Feng L,Pan L,et al. Relationships between optical properties of peach flesh with firmness and tissue structure during storage[J]. Postharvest Biology and Technology,2020,163:111134.

相似文献/References:

[1]潘磊庆,魏康丽,曹念念,等.果蔬光学参数测量及其在品质检测方面的研究进展[J].南京农业大学学报,2018,41(1):26.[doi:10.7685/jnau.201706029]
 PAN Leiqing,WEI Kangli,CAO Niannian,et al.Measurement of optical parameters of fruits and vegetables and its application in quality detection[J].Journal of Nanjing Agricultural University,2018,41(3):26.[doi:10.7685/jnau.201706029]

备注/Memo

备注/Memo:
收稿日期:2020-07-19。
基金项目:国家自然科学基金项目(U2003114,31671926);中央高校基本科研业务费专项资金(KYLH202003)
作者简介:潘磊庆,教授,博导,研究方向为农产品无损检测,E-mail:pan_leiqing@njau.edu.cn。
更新日期/Last Update: 1900-01-01