[1]罗曦,魏林燕,郑燕梅,等.水稻护颖发育相关基因的研究进展[J].南京农业大学学报,2021,44(3):412-420.[doi:10.7685/jnau.202007047]
 LUO Xi,WEI Linyan,ZHENG Yanmei,et al.Research advances on developmental genes of sterile lemmas in rice[J].Journal of Nanjing Agricultural University,2021,44(3):412-420.[doi:10.7685/jnau.202007047]
点击复制

水稻护颖发育相关基因的研究进展()
分享到:

《南京农业大学学报》[ISSN:1000-2030/CN:32-1148/S]

卷:
44卷
期数:
2021年3期
页码:
412-420
栏目:
综述
出版日期:
2021-05-10

文章信息/Info

Title:
Research advances on developmental genes of sterile lemmas in rice
作者:
罗曦12 魏林燕12 郑燕梅12 魏毅东12 连玲12 谢华安12 吴方喜12
1. 福建省农业科学院水稻研究所, 福建 福州 350019;
2. 农业农村部华南杂交水稻种质创新与分子育种重点实验室/福州(国家)水稻改良分中心/福建省作物分子育种工程实验室/福建省水稻分子育种重点实验室/福建省作物种质创新与分子育种省部共建国家重点实验室培育基地/杂交水稻 国家重点实验室华南研究基地/水稻国家工程实验室, 福建 福州 350003
Author(s):
LUO Xi12 WEI Linyan12 ZHENG Yanmei12 WEI Yidong12 LIAN Ling12 XIE Hua’an12 WU Fangxi12
1. Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350019, China;
2. Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Rural Affairs/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding/Incubator of National Key Laboratory of Fujian Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences&Technology/South China Bases of National Key Laboratory of Hybrid Rice for China/National Rice Engineering Laboratory of China, Fuzhou 350003, China
关键词:
水稻护颖基因互作花发育小穗
Keywords:
ricesterile lemmagene interactionsflower developmentspikelet
分类号:
S511
DOI:
10.7685/jnau.202007047
摘要:
水稻(Oryza sativa L.)花序和小穗的结构特点是决定水稻产量的重要因素。在禾本科植物中,护颖是水稻特有的小穗器官。一些调控护颖发育的基因,也参与其他花序或小穗器官的调控。护颖发育相关基因的研究对阐明水稻花发育的分子机制具有重要意义。本文介绍了与护颖发育直接相关的12个基因的研究进展,并根据突变体表型以及基因功能特点,将这12个基因分为开花决定基因、花序分生组织特征基因和花器官特征基因3类。根据已有研究结果和合理的假设,绘制调控护颖发育基因的互作模式图,并提出值得进一步探索的方向。
Abstract:
The characteristics of inflorescences and spikelets of rice(Oryza sativa L.) help determine grain yield. The sterile lemmas are special organs of rice not found in other grasses. The genes regulating the development of sterile lemmas are also involved in regulating grain yield-associated traits. Understanding the molecular mechanisms of sterile lemma development is pivotal for elucidating the mechanisms of rice flower development. In this paper,we characterized 12 known genes that directly affect the development of sterile lemma. The expression patterns of the 12 genes were determined in sterile lemma and other rice flower organs. On the basis of the results and reasonable assumptions,we proposed a working model to better understand the molecular mechanisms of sterile lemma development in rice,and the research area worth further exploration were put forward.

参考文献/References:

[1] Kyoko I,Hidehiko S,Yasuo N. Development course of infloresence and spikelet in rice[J]. Breeding Sci,2004,54(2):147-156.
[2] Hitoshi Y,Yasuo N. Flower development in rice[J]. J Exp Bot,2011,62(14):4719-4730.
[3] Howarth W O. The Gramineae:a study of cereal,bamboo and grasses[J]. Nature,1935,136(3435):317-319.
[4] Kellogg E A. The evolutionary history of Ehrhartoideae,Oryzeae,and Oryza[J].Rice,2009,2:1-14.
[5] Terrell E E,Peterson P M,Wergin W P. Epidermal features and spikelet micromorphology in Oryza and related genera(Poaceae:Oryzeae)[J]. Smithsonian Contributions to Botany,2001,91:1-50.
[6] Zhang T,Li Y F,Ma L,et al. LATERAL FLORET1 induced the three-florets spikelet in rice[J].Proc Natl Acad Sci USA,2017,114(37):9984-9989.
[7] Ren D Y,Xu Q K,Qiu Z N,et al. FON4 prevents the multi-floret spikelet in rice[J].Plant Biotechnol J,2019,17(6):1007-1009.
[8] Yoshida A,Suzaki T,Tanaka W,et al. The homeotic gene long sterile lemma(G1)specifies sterile lemma identity in the rice spikelet[J]. Proc Natl Acad Sci USA,2009,106(47):20103-20108.
[9] Kobayashi K,Maekawa M,Miyao A,et al. PANICLE PHYTOMER2(PAP2),encoding a SEPALLATA subfamily MADS-box protein,positively controls spikelet meristem identity in rice[J].Plant Cell Physiol,2010,51(1):47-57.
[10] Xu Q K,Yu H P,Xia S S,et al. The C2H2 zinc-finger protein lacking rudimentary GLUME 1 regulates spikelet development in rice[J].Sci Bull,2020,65:753-764.
[11] Zhuang H,Wang H L,Zhang T,et al. NONSTOP GLUMES1 encodes a C2H2 zinc finger protein that regulates spikelet development in rice[J]. Plant Cell,2020,32:392-413.
[12] Li W Q,Yoshida A,Takahashi M,et al. SAD1,an RNA polymerase Ⅰ subunit A34.5 of rice,interacts with mediator and controls various aspects of plant development[J]. Plant J,2015,81:282-291.
[13] Yang J G,Lee S Y,Hang R L,et al. OsVIL2 functions with PRC2 to induce flowering by repressing OsLFL1 in rice[J]. Plant J,2013,73:566-578.
[14] Zhang J R,Tang W,Huang Y L,et al. Down-regulation of a LBD-like gene,OsIG1,leads to occurrence of unusual double ovules and developmental abnormalities of various floral organs and megagametophyte in rice[J].J Exp Bot,2015,66(1):99-112.
[15] Li H G,Xue D W,Gao Z Y,et al. A putative lipase gene EXTRA GLUME1 regulates both empty-glume fate and spikelet development in rice[J]. Plant J,2009,57(4):593-605.
[16] Yoshida A,Ohmori Y,Kitano H,et al. ABERRANT SPIKELET AND PANICLE1,encoding a TOPLESS-related transcriptional co-repressor,is involved in the regulation of meristem fate in rice[J]. Plant J,2012,70(2):327-339.
[17] Komatsu M,Chujo A,Nagato Y,et al. FRIZZY PANICLE is required to prevent the formation of axillary meristems and to establish floral meristem identity in rice spikelets[J]. Development,2003,130:3841-3850.
[18] Lee D Y,Lee J,Moon S,et al. The rice heterochronic gene SUPERNUMERARY BRACT regulates the transition from spikelet meristem to floral meristem[J]. Plant J,2007,49(1):64-78.
[19] Lee D Y,An G. Two AP2 family genes,SUPERNUMERARY BRACT(SNB)and OsINDETERMINATE SPIKELET1(OsIDS1)synergistically control inflorescence architecture and floral meristem establishment in rice[J]. Plant J,2012,69(3):445-461.
[20] Ren D Y,Li Y F,Zhao F M,et al. MULTI-FLORET SPIKELET1,which encodes an AP2/ERF protein,determines spikelet meristem fate and sterile lemma identity in rice[J].Plant Physiol,2013,162(2):872-884.
[21] Hong L L,Qian Q,Zhu K M,et al. ELE restrains empty glumes from developing into lemmas[J]. J Genet Genomics,2010,37:101-115.
[22] Liu M J,Li H F,Su Y L,et al. G1/ELE functions in the development of rice lemmas in addition to determining identities of empty gumes[J]. Front Plant Sci,2016,7:1-12.
[23] Zhao L,Nakazawa M,Takase T,et al. Overexpression of LSH1,a member of an uncharacterised gene family,causes enhanced light regulation of seedling development[J]. Plant J,2004,37:694-706.
[24] Alvarez-Buylla E,Pelaz S,Liljegren S,et al. An ancestral MADS-box gene duplication occurred beforethe divergence of plants and animals[J]. Proc Natl Acad Sci USA,2000,97(10):5328-5333.
[25] Sentoku N,Kato H,Kitano H,et al. OsMADS22,an STMADS11-like MADS-box gene of rice,is expressed in non-vegetative tissues and its ectopic expression induces spikelet meristem indeterminacy[J]. Mol Gen Genomics,2005,273:1-9.
[26] Yoon H Y,Yang J G,Liang W Q,et al. OsVIL2 regulates spikelet development by controlling regulatory genes in Oryza sativa[J]. Front Plant Sci,2018,9:1-12.
[27] Ori N,Eshed Y,Chuck G,et al. Mechanisms that control knox gene expression in the Arabidopsis shoot[J]. Development,2000,127,5523-5532.
[28] Chalfun-Junior A,Franken J,Mes J J,et al. ASYMMETRIC LEAVES2-LIKE1 gene,a member of the AS2/LOB family,controls proximal-distal patterning in Arabidopsis petals[J]. Plant Mol Biol,2005,57:559-575.
[29] Cai Q,Yuan Z,Chen M J,et al. Jasmonic acid regulates spikelet development in rice[J].Nat Commun,2014,5:1-13.
[30] Szemenyei H,Hannon M,Long J A. TOPLESS mediates auxin-dependent transcriptional repression during Arabidopsis embryogenesis[J]. Science,2008,319(5868):1384-1386.
[31] Gallavotti A,Long J A,Stanfield S,et al. The control of axillary meristem fate in the maize ramosa pathway[J]. Development,2010,137(17):2849-2856.
[32] Riechmann J L,Heard J,Martin G,et al. Arabidopsis transcription factors:genome-wide comparative analysis among eukaryotes[J]. Science,2000,290(5499):2105-2110.
[33] Nakano T,Suzuki K,Fujimura T,et al. Genome-wide analysis of the ERF gene family in Arabidopsis and rice[J].Plant Physiol,2006,140(2):411-432.
[34] Yi G,Choi J H,Jeong E G,et al. Morphological and molecular characterization of a new frizzy panicle mutant,"fzp-9(t)",in rice(Oryza sativa L.)[J]. Hereditas,2005,142(2005):92-97.
[35] Ren D Y,Hu J,Xu Q K,et al. FZP determines grain size and sterile lemma fate in rice[J].J Exp Bot,2018,69(20):4853-4866.
[36] 张云,刘青林.植物花发育的分子机理研究进展[J].植物学通报,2003,20(5):589-601. Zhang Y,Liu Q L. Proceedings on molecular mechanism of plant flower development[J].Chinese Bulletin of Botany,2003,20(5):589-601(in Chinese with English abstract).
[37] 黄方,迟英俊,喻德跃. 植物MADS-box基因研究进展[J]. 南京农业大学学报,2012,35(5):9-18.DOI:10.7685/j.issn.1000-2030.2012.05.002. Huang F,Chi Y J,Yu D Y. Research advances of MADS-box genes in plants[J]. Journal of Nanjing Agricultural University,2012,35(5):9-18(in Chinese with English abstract).
[38] Gaudino R J,Pikaard C S. Cytokinin induction of RNA polymeraseI transcription in Arabidopsis thaliana[J]. J Biol Chem,1997,272(10):6799-6804.
[39] Poethig R S. Small RNAs and developmental timing in plants[J]. Curr Opin Genet,2009,19(4):374-378.
[40] Khanday I,Yadav S R,Vijayraghavan U. Rice LHS1/OsMADS1 controls floret meristem specification by coordinated regulation of transcription factors and hormone signaling pathways[J].Plant Physiol,2013,161:(4)1970-1983.
[41] Dai Z Y,Wang J,Zhu M L,et al. OsMADS1 represses microRNA172 in elongation of palea/lemma development in rice[J]. Front Plant Sci,2016,7:1-10.
[42] Gao X C,Liang W Q,Yin C S,et al. The SEPALLATA-like gene OsMADS34 is required for rice inflorescence and spikelet development[J]. Plant Physiol,2010,153(2):728-740.
[43] Irish V F,Sussex I M. Function of the APETALA-1 gene during Arabidopsis floral development[J].Plant Cell,1990,2:741-753.
[44] Huala E,Sussex I M. LEAFY interacts with floral homeotic genes to regulate Arabidopsis floral development[J].Plant Cell,1992,4:901-903.
[45] Okamauro J K,Caster B,Villarroel R,et al. The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis[J]. Proc Natl Acad Sci USA,1997,94(13):7076-7081.
[46] Chuck G,Muszynski M,Kellogg E,et al. The control of spikelet meristem identity by the branched silkless1 gene in maize[J]. Science,2002,298(5596):1238-1241.
[47] Zhu Q H,Hoque M S,Dennis E S,et al. Ds tagging of BRABCHED FLORETLESS1(BFL1)that mediates the transition from spikelet to floret meristem in rice(Oryza sativa L.)[J].BMC Plan Biol,2003,3:6-14.
[48] Aukerman M J,Sakai H. Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes[J]. Plant Cell,2003,15(11):2730-2741.
[49] Schmid M,Uhlenhaut N H,Godard F,et al. Dissection of floral induction pathways using global expression analysis[J]. Development,2003,130(24):6001-6012.
[50] Chen X M. A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development[J]. Science,2004,303(5666):2022-2025.
[51] Lauter N,Kampani A,Carlson S,et al. microRNA172 down-regulates glossy15 to promote vegetative phase change in maize[J]. Proc Natl Acad Sci USA,2005,102(26):9412-9417.
[52] Chuck G,Meeley R,Irish E,et al. The maize tasselseed4 microRNA controls sex determination and meristem cell fate by targeting Tasselseed6/indeterminate spikelet1[J]. Nat Genet,2007,39(12):1517-1521.
[53] Martin A,Adam H,Diaz-Mendoza M,et al. Graft-transmissible induction of potato tuberization by the microRNA miR172[J]. Development,2009,136(17):2873-2881.
[54] Mathieu J,Yant L J,Mürdter F,et al. Repression of flowering by the miR172 target SMZ[J]. PLoS Biology,2009,7(7):e1000148.
[55] Coen E S,Meyerowitz E M. The war of the whorls:genetic interactions controlling flower development[J]. Nature,1991,353(6339):31-37.
[56] Ke J Y,Ma H L,Gu X,et al. Structural basis for recognition of diverse transcriptional repressors by the TOPLESS family of corepressors[J]. Sci Adv,2015,1(6):e1500107.

相似文献/References:

[1]张辰明,徐烨红,赵海娟,等.不同氮形态对水稻苗期氮素吸收和根系生长的影响[J].南京农业大学学报,2011,34(3):72.[doi:10.7685/j.issn.1000-2030.2011.03.013]
 ZHANG Chen-ming,XU Ye-hong,ZHAO Hai-juan,et al.Effects of different nitrogen forms on nitrogen uptake and root growth of rice at the seedling stage[J].Journal of Nanjing Agricultural University,2011,34(3):72.[doi:10.7685/j.issn.1000-2030.2011.03.013]
[2]郝文雅,沈其荣,冉炜,等.西瓜和水稻根系分泌物中糖和氨基酸对西瓜枯萎病病原菌生长的影响[J].南京农业大学学报,2011,34(3):77.[doi:10.7685/j.issn.1000-2030.2011.03.014]
 HAO Wen-ya,SHEN Qi-rong,RAN Wei,et al.The effects of sugars and amino acids in watermelon and rice root exudates on the growth of Fusarium oxysporum f.sp. niveum[J].Journal of Nanjing Agricultural University,2011,34(3):77.[doi:10.7685/j.issn.1000-2030.2011.03.014]
[3]徐小飒,刘喜,赵志刚,等.培矮64S/93-11重组自交系分子图谱构建及千粒重QTL检测[J].南京农业大学学报,2011,34(1):8.[doi:10.7685/j.issn.1000-2030.2011.01.002]
 XU Xiao-sa,LIU Xi,ZHAO Zhi-gang,et al.Construction of genetic linkage map based on a RILs population derived from the hybrid rice Peiai 64S/93-11 and detection of QTL for 1000-grain weight[J].Journal of Nanjing Agricultural University,2011,34(3):8.[doi:10.7685/j.issn.1000-2030.2011.01.002]
[4]魏广彬,徐海港,丁艳峰,等.水稻设计栽培系统的研制与实现[J].南京农业大学学报,2011,34(1):14.[doi:10.7685/j.issn.1000-2030.2011.01.003]
 WEI Guang-bin,XU Hai-gang,DING Yan-feng,et al.Development and realization of the rice design cultivation system[J].Journal of Nanjing Agricultural University,2011,34(3):14.[doi:10.7685/j.issn.1000-2030.2011.01.003]
[5]李刚华,王惠芝,王绍华,等.穗肥对水稻穗分化期碳氮代谢及颖花数的影响[J].南京农业大学学报,2010,33(1):1.[doi:10.7685/j.issn.1000-2030.2010.01.001]
 LI Gang-hua,WANG Hui-zhi,WANG Shao-hua,et al.Effect of nitrogen applied at rice panicle initiation stage on carbon and nitrogen metabolism and spikelets per panicle[J].Journal of Nanjing Agricultural University,2010,33(3):1.[doi:10.7685/j.issn.1000-2030.2010.01.001]
[6]王碧茜,范晓荣,徐国华,等.不同氮效率水稻品种旗叶的衰老特征[J].南京农业大学学报,2010,33(2):8.[doi:10.7685/j.issn.1000-2030.2010.02.002]
 WANG Bi-qian,FAN Xiao-rong,XU Guo-hua,et al.Characteristics of flag leaf senescence among three rice cultivars with different nitrogen use efficiency[J].Journal of Nanjing Agricultural University,2010,33(3):8.[doi:10.7685/j.issn.1000-2030.2010.02.002]
[7]赵成国,徐海港,李刚华,等.超高产单季粳稻抽穗期群体构成研究[J].南京农业大学学报,2011,34(2):23.[doi:10.7685/j.issn.1000-2030.2011.02.005]
 ZHAO Cheng-guo,XU Hai-gang,LI Gang-hua,et al.Studies on population composition of super-high-yielding single-cropping japonica rice in heading stage[J].Journal of Nanjing Agricultural University,2011,34(3):23.[doi:10.7685/j.issn.1000-2030.2011.02.005]
[8]陈志德,仲维功,王军,等.水稻苗期Cd2+胁迫的QTL定位研究[J].南京农业大学学报,2010,33(3):1.[doi:10.7685/j.issn.1000-2030.2010.03.001]
 CHEN Zhi-de,ZHONG Wei-gong,WANG Jun,et al.Mapping of QTL of tolerance to Cd^{2+} stress at seedling stage in rice(Oryza sativa L.)[J].Journal of Nanjing Agricultural University,2010,33(3):1.[doi:10.7685/j.issn.1000-2030.2010.03.001]
[9]叶利庭,樊剑波,徐晔红,等.不同氮效率水稻的生长特性[J].南京农业大学学报,2010,33(3):77.[doi:10.7685/j.issn.1000-2030.2010.03.015]
 YE Li-ting,FAN Jian-bo,XU Ye-hong,et al.Characteristics of growth in rice genotypes with different nitrogen use efficiency[J].Journal of Nanjing Agricultural University,2010,33(3):77.[doi:10.7685/j.issn.1000-2030.2010.03.015]
[10]晋玉宽,杨世湖,余丽,等.不同启动子驱动下Pib基因的表达及与稻瘟病抗性的关系[J].南京农业大学学报,2010,33(4):1.[doi:10.7685/j.issn.1000-2030.2010.04.001]
 JIN Yu-kuan,YANG Shi-hu,YU Li,et al.Expression and resistance analysis of the Pib gene in transgenic rice under different promoters[J].Journal of Nanjing Agricultural University,2010,33(3):1.[doi:10.7685/j.issn.1000-2030.2010.04.001]

备注/Memo

备注/Memo:
收稿日期:2020-07-30。
基金项目:福建省科技厅省属公益项目(2017R1021-3,2018R1021-5);国家重点研发计划项目(2016YFD0300508)
作者简介:罗曦,助理研究员,主要从事水稻分子育种研究,E-mail:luoxi9110@163.com。
通信作者:吴方喜,副研究员,主要从事水稻分子育种研究,E-mail:wufangxi@faas.cn。
更新日期/Last Update: 1900-01-01