[1]王建军,徐园园,刘同坤,等.紫菜薹BrbHLH49基因克隆与功能分析[J].南京农业大学学报,2021,44(3):421-427.[doi:10.7685/jnau.202008009]
 WANG Jianjun,XU Yuanyuan,LIU Tongkun,et al.Cloning and function analysis of BrbHLH49 gene in purple tsai-tai[J].Journal of Nanjing Agricultural University,2021,44(3):421-427.[doi:10.7685/jnau.202008009]
点击复制

紫菜薹BrbHLH49基因克隆与功能分析()
分享到:

《南京农业大学学报》[ISSN:1000-2030/CN:32-1148/S]

卷:
44卷
期数:
2021年3期
页码:
421-427
栏目:
植物科学
出版日期:
2021-05-10

文章信息/Info

Title:
Cloning and function analysis of BrbHLH49 gene in purple tsai-tai
作者:
王建军 徐园园 刘同坤 侯喜林
南京农业大学作物遗传与种质创新国家重点实验室/农业农村部华东地区园艺作物生物学 与种质创制重点实验室/园艺学院, 江苏 南京 210095
Author(s):
WANG Jianjun XU Yuanyuan LIU Tongkun HOU Xilin
State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crop in East China, Ministry of Agriculture and Rural Affairs/College of Horiticulture, Nanjing Agricultural University, Nanjing 210095, China
关键词:
紫菜薹BrbHLH49基因功能分析花青素
Keywords:
purple tsai-taiBrbHLH49 genefunction analysisanthocyanin
分类号:
S634.3
DOI:
10.7685/jnau.202008009
摘要:
[目的] 本文旨在研究紫菜薹BrbHLH49基因在花青素合成中的功能。[方法] 以紫菜薹为材料,通过同源克隆获得BrbHLH49基因全长序列,并与其他物种中的同源序列进行进化树分析;构建pEarlyGate101-BrbHLH49-YFP载体并转化导入烟草叶片中,研究BrbHLH49蛋白的亚细胞定位;采用荧光定量PCR (RT-qPCR)技术分析BrbHLH49基因在紫菜薹和‘四九菜心’(‘CX-49’)不同组织中的表达情况,同时分析野生型和35S:BrbHLH49-YFP转基因拟南芥中花青素合成相关基因的表达。[结果] BrbHLH49基因含有1 431 bp开放阅读框,编码476个氨基酸,其编码的蛋白定位于细胞核中。在进化过程中BrbHLH49编码的氨基酸序列与甘蓝型油菜和野甘蓝(原变种)同源性最高,亲缘关系最近。RT-qPCR结果表明,紫菜薹的薹和叶中BrbHLH49相对表达量均显著高于‘CX-49’,且BrbHLH49转基因拟南芥植株中花青素合成相关基因的表达量显著高于野生型。[结论] BrbHLH49蛋白定位于细胞核中。BrbHLH49基因在紫菜薹的薹和叶中高表达,且拟南芥中过表达该基因能显著提高花青素的合成。
Abstract:
[Objectives] The purpose of this study was to explore the function of BrbHLH49 gene in anthocyanin synthesis of purple tsai-tai. [Methods] Using purple tsai-tai as the material,the full-length BrbHLH49 was cloned by homology cloning method. The amino acid sequence alignment and evolution analysis were performed with other species. To study the subcellular localization of BrbHLH49 protein,the vector pEarlyGate101-BrbHLH49-YFP was constructed,and transformed into the agrobacterium,and then injected into tobacco leaves. Moreover,RT-qPCR was used to analyze the expression of BrbHLH49 gene in different tissues of purple tsai-tai and ‘CX-49’. And the relative expression levels of genes related to anthocyanin synthesis in wild-type and 35S:BrbHLH49-YFP transgenic Arabidopsis thaliana were analyzed by RT-qPCR. [Results] The open reading frame length of BrbHLH49 gene was 1 431 bp,encoding 476 amino acids. Subcellular localization results showed that BrbHLH49 protein was expressed in the nucleus. During plants evolution,the amino acid sequence of BrbHLH49 encoded had a close relationship with those of Brassica napus and Brassica oleracea var. oleracea. RT-qPCR results showed that the relative expression levels of BrbHLH49 in the stalks and leaves of purple tsai-tai were significantly higher than those of ‘CX-49’. Meanwhile,the expression levels of the genes related to anthocyanin synthesis in the transgenic A.thaliana plants were significantly higher than those of the wild-type. [Conclusions] BrbHLH49 was located in the nucleus. The BrbHLH49 gene was highly expressed in the stalks and leaves of purple tsai-tai. And overexpression of BrbHLH49 gene in A.thaliana could significantly increase the synthesis of anthocyanin.

参考文献/References:

[1] 陈路格. 紫菜薹紫色相关基因的QTL分析与pur07初定位[D]. 武汉:华中农业大学,2016. Chen L G. QTL analysis on purple trait in purple-caital and the mapping of the pur07[D]. Wuhan:Huazhong Agricultural University,2016(in Chinese with English abstract).
[2] Bhaswant M,Shafie S R,Mathai M L,et al. Anthocyanins in chokeberry and purple maize attenuate diet-induced metabolic syndrome in rats[J]. Nutrition,2017,41:24-31.
[3] 辛立波,李晓波,於洪建,等. 葡萄籽低聚原花青素化学成分及抗氧化研究[J]. 食品研究与开发,2012,33(8):40-43. Xin L B,Li X B,Yu H J,et al. Isolation,purification and antioxidant activities of oligermeric proanthocyanidins in grape seeds[J]. Food Research and Development,2012,33(8):40-43(in Chinese with English abstract).
[4] 于斌,余小平,易龙,等. 黑米花色苷抑制人乳腺癌细胞促血管生成因子表达的机制[J]. 营养学报,2010,32(6):545-550. Yu B,Yu X P,Yi L,et al. Mechanisms of black rice anthocyanins inhibiting expression of angiogenesis-related factors in human breast cancer cells[J]. Acta Nutrimenta Sinica,2010,32(6):545-550(in Chinese with English abstract).
[5] 贾赵东,马佩勇,边小峰,等. 植物花青素合成代谢途径及其分子调控[J]. 西北植物学报,2014,34(7):1496-1506. Jia Z D,Ma P Y,Bian X F,et al. Biosynthesis metabolic pathway and molecular regulation of plants anthocyanin[J]. Acta Botanica Boreali-Occidentalia Sinica,2014,34(7):1496-1506(in Chinese with English abstract).
[6] Liu Y,Tikunov Y,Schouten R E,et al. Anthocyanin biosynthesis and degradation mechanisms in Solanaceous vegetables:a review[J]. Frontiers in Chemistry,2018,6:52.
[7] Ilk N,Ding J,Ihnatowicz A,et al. Natural variation for anthocyanin accumulation under high-light and low-temperature stress is attributable to the ENHANCER OF AG-42(HUA2)locus in combination with PRODUCTION OF ANTHOCYANIN PIGMENT1(PAP1)and PAP2[J]. New Phytologist,2015,206(1):422-435.
[8] Xie Y,Tan H J,Ma Z X,et al. DELLA proteins promote anthocyanin biosynthesis via sequestering MYBL2 and JAZ suppressors of the MYB/bHLH/WD40 complex in Arabidopsis thaliana[J]. Molecular Plant,2016,9(5):711-721.
[9] Tsuda T. Dietary anthocyanin-rich plants:biochemical basis and recent progress in health benefits studies[J]. Molecular Nutrition & Food Research,2012,56(1):159-170.
[10] 万东璞,于卓,吴燕民,等. 花青素代谢调控植物彩叶研究进展[J]. 中国农业科技导报,2020,22(2):30-38. Wan D P,Yu Z,Wu Y M,et al. Regulation of anthocyanin metabolism on colored leaves of plants[J]. Journal of Agricultural Science and Technology,2020,22(2):30-38(in Chinese with English abstract).
[11] Mellway R D,Tran L T,Prouse M B,et al. The wound-,pathogen-,and ultraviolet B-responsive MYB134 gene encodes an R2R3 MYB transcription factor that regulates proanthocyanidin synthesis in poplar[J]. Plant Physiology,2009,150(2):924-941.
[12] Hichri I,Barrieu F,Bogs J,et al. Recent advances in the transcriptional regulation of the flavonoid biosynthetic pathway[J]. Journal of Experimental Botany,2011,62(8):2465-2483.
[13] Xu W J,Dubos C,Lepiniec L. Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes[J]. Trends in Plant Science,2015,20(3):176-185.
[14] 刘晓月,王文生,傅彬英. 植物bHLH转录因子家族的功能研究进展[J]. 生物技术进展,2011,1(6):391-397. Liu X Y,Wang W S,Fu B Y. Research progress of plant bHLH transcription factor family[J]. Current Biotechnology,2011,1(6):391-397(in Chinese with English abstract).
[15] 张鑫,宋经元,胡鸢雷,等. bHLH转录因子调控植物活性成分生物合成的研究进展[J]. 药学学报,2014,49(4):435-442. Zhang X,Song J Y,Hu Y L,et al. Research progress of the regulation on active compound biosynthesis by the bHLH transcription factors in plants[J]. Acta Pharmaceutica Sinica,2014,49(4):435-442(in Chinese with English abstract).
[16] Bailey P C,Martin C,Toledo-Ortiz G,et al. Update on the basic helix-loop-helix transcription factor gene family in Arabidopsis thaliana[J]. The Plant Cell,2003,15(11):2497-2502.
[17] Waseem M,Li Z G. Overexpression of tomato SlbHLH22 transcription factor gene enhances fruit sensitivity to exogenous phytohormones and shortens fruit shelf-life[J]. Journal of Biotechnology,2019,299:50-56.
[18] Matus J T,Poupin M J,Ca?ón P,et al. Isolation of WDR and bHLH genes related to flavonoid synthesis in grapevine(Vitis vinifera L.)[J]. Plant Molecular Biology,2010,72(6):607-620.
[19] Bai Y H,Pattanaik S,Patra B,et al. Flavonoid-related basic helix-loop-helix regulators,NtAn1a and NtAn1b,of tobacco have originated from two ancestors and are functionally active[J]. Planta,2011,234(2):363-375.
[20] Li G H,Chen H C,Liu J L,et al. A high-density genetic map developed by specific-locus amplified fragment(SLAF) sequencing and identification of a locus controlling anthocyanin pigmentation in stalk of Zicaitai(Brassica rapa L. ssp. chinensis var. purpurea)[J]. BMC Genomics,2019,20(1):1-13.
[21] Halabian R,Fathabad M E,Masroori N,et al. Expression and purification of recombinant human coagulation factor VⅡ fused to a histidine tag using Gateway technology[J]. Blood Transfusion,2009,7(4):305-312.
[22] 王惠玉,任海波,李林,等. 不结球白菜开花相关基因BcGI的克隆、亚细胞定位及基因沉默功能验证[J]. 南京农业大学学报,2019,42(4):648-656. DOI:10.7685/jnau.201810036. Wang H Y,Ren H B,Li L,et al. Cloning,subcellular localization and silencing function verification of BcGI gene involved in flowering pathway in non-heading Chinese cabbage[J]. Journal of Nanjing Agricultural University,2019,42(4):648-656(in Chinese with English abstract).
[23] Zheng L P,Yao J N,Gao F L,et al. The subcellular localization and functional analysis of Fibrillarin 2,a nucleolar protein in Nicotiana benthamiana[J]. BioMed Research International,2016,2016:2831287.
[24] 王小青,韩键,文杨,等. 呈色机制不同的桃叶片花色素苷积累及合成相关基因表达的季节性差异[J]. 南京农业大学学报,2016,39(6):924-931. DOI:10.7685/jnau.201602027. Wang X Q,Han J,Wen Y,et al. Seasonal difference in the expression pattern of genes related to anthocyanin accumulation and biosynthesis in leaves of peach with different coloration modes[J]. Journal of Nanjing Agricultural University,2016,39(6):924-931(in Chinese with English abstract).
[25] 祝志欣,鲁迎青. 花青素代谢途径与植物颜色变异[J]. 植物学报,2016,51(1):107-119. Zhu Z X,Lu Y Q. Plant color mutants and the anthocyanin pathway[J]. Chinese Bulletin of Botany,2016,51(1):107-119(in Chinese with English abstract).
[26] Davies K M,Albert N W,Schwinn K E. From landing lights to mimicry:the molecular regulation of flower colouration and mechanisms for pigmentation patterning[J]. Functional Plant Biology,2012,39(8):619-638.
[27] Zhu Z X,Wang H L,Wang Y T,et al. Characterization of the Cis elements in the proximal promoter regions of the anthocyanin pathway genes reveals a common regulatory logic that governs pathway regulation[J]. Journal of Experimental Botany,2015,66(13):3775-3789.
[28] Xia Y,Li Z,Wang J W,et al. Isolation and identification of a TaTDR-like wheat gene encoding a bHLH domain protein,which negatively regulates chlorophyll biosynthesis in Arabidopsis[J]. International Journal of Molecular Sciences,2020,21(2):629.
[29] Ran J H,Shen T T,Liu W J,et al. Evolution of the bHLH genes involved in stomatal development:implications for the expansion of developmental complexity of stomata in land plants[J]. PLoS One,2013,8(11):e78997.
[30] Zhu Z G,Liang H L,Chen G P,et al. The bHLH transcription factor SlPRE2 regulates tomato fruit development and modulates plant response to gibberellin[J]. Plant Cell Reports,2019,38(9):1053-1064.
[31] 宁改星. 苹果MdbHLH51和MdbHLH155的基因克隆及其在花青素合成中的作用[D]. 兰州:甘肃农业大学,2020. Ning G X. Cloning and elucidation of the functional role of apple MdbHLH51 and MdbHLH155 in anthocyanin biosynthesis[D]. Lanzhou:Gansu Agricultural University,2020(in Chinese with English abstract).
[32] Zhao R,Song X X,Yang N,et al. Expression of the subgroup Ⅲf bHLH transcription factor CpbHLH1 from Chimonanthus praecox(L.) in transgenic model plants inhibits anthocyanin accumulation[J]. Plant Cell Reports,2020,39(7):891-907.

备注/Memo

备注/Memo:
收稿日期:2020-08-06。
基金项目:江苏省博士后科研资助计划项目(2020Z237);安徽省重点研究与开发计划项目(202004a06020062);江苏省农业科技自主创新资金项目[CX(19)3122];江苏高校优势学科建设工程资助项目(PAPD)
作者简介:王建军,副教授。
通信作者:侯喜林,教授,博导,主要从事蔬菜遗传育种与分子生物学研究,E-mail:hxl@njau.edu.cn。
更新日期/Last Update: 1900-01-01