[1]张雅芬,刘亚琴,蒋明义.水稻bip130与OSA7蛋白互作的验证及bip130对质膜H+-ATPase活性的影响[J].南京农业大学学报,2021,44(3):457-467.[doi:10.7685/jnau.202006044]
 ZHANG Yafen,LIU Yaqin,JIANG Mingyi.Identification of the interaction between bip130 and OSA7 and the effect of bip130 on plasma membrane H+-ATPase activity in rice[J].Journal of Nanjing Agricultural University,2021,44(3):457-467.[doi:10.7685/jnau.202006044]
点击复制

水稻bip130与OSA7蛋白互作的验证及bip130对质膜H+-ATPase活性的影响()
分享到:

《南京农业大学学报》[ISSN:1000-2030/CN:32-1148/S]

卷:
44卷
期数:
2021年3期
页码:
457-467
栏目:
生物与环境
出版日期:
2021-05-10

文章信息/Info

Title:
Identification of the interaction between bip130 and OSA7 and the effect of bip130 on plasma membrane H+-ATPase activity in rice
作者:
张雅芬 刘亚琴 蒋明义
南京农业大学生命科学学院, 江苏 南京 210095
Author(s):
ZHANG Yafen LIU Yaqin JIANG Mingyi
College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
关键词:
bip130OSA7蛋白互作ABA质膜H+-ATPase活性
Keywords:
bip130OSA7protein-protein interactionabscisic acid(ABA)plasma membrane H+-ATPase activity
分类号:
Q945
DOI:
10.7685/jnau.202006044
摘要:
[目的] 本文旨在验证水稻中bip130(油菜素内酯受体蛋白BR11互作蛋白130)与OSA7(质膜H+-ATP酶7)的相互作用以及ABA处理下bip130对水稻根部质膜H+-ATPase活性的影响。[方法] 采用酵母双杂交技术(Y2H)、萤火虫荧光素酶互补成像系统(LCI)、GST pull-down、双分子荧光互补技术(BiFC)验证bip130与OSA7是否相互作用,并用Y2H与LCI验证bip130与OSA7相互作用的区域以及bip130与OSA7同源蛋白的关系。利用RT-qPCR分析ABA处理时bip130OSA7的上、下游关系。利用bip130突变体通过水稻原生质体瞬时表达体系检测bip130对OSA7活性的影响。[结果] bip130与OSA7的胞质N结构域相互作用,不与5个同源蛋白的胞质N结构域互作。ABA信号途径中bip130位于OSA7的上游;突变体分析结果显示,bip130过表达进一步增强ABA诱导的质膜H+-ATPase活性,而bip130-RNAi阻止ABA诱导的质膜H+-ATPase活性增加。原生质体瞬时表达结果显示在ABA信号途径中bip130可以调控质膜H+-ATPase活性。[结论] bip130与OSA7的胞质N结构域相互作用,且bip130参与调控ABA信号途径中质膜H+-ATPase的活性。
Abstract:
[Objectives] This paper was aimed to confirm the interaction between bip130(BR11-interacting protein 130) and OSA7(plasma membrane H+-ATPase 7) and verify that bip130 could regulate the activity of plasma membrane H+-ATPase in rice roots under ABA treatment. [Methods] Yeast two-hybrid technology(Y2H),firefly luciferase complementary imaging system(LCI),GST pull-down and bimolecular fluorescence complementary technology(BiFC) were used to verify whether bip130 interacts with OSA7. Then,Y2H and LCI had been used to identify the interaction region between bip130 and OSA7 and the relationship between bip130 and OSA7 homologous proteins. RT-qPCR had been used to analyze the upstream and downstream relationship between bip130 and OSA7 under ABA treatment. The bip130 mutant materials have been used in the rice protoplast transient expression system to detect whether bip130 could affect the activity of plasma membrane H+-ATPase. [Results] The results indicated that bip130 interacted with the cytoplasmic N-domain of OSA7,but did not interact with the cytoplasmic N-domain of these five homologous proteins. In the ABA signaling pathway,bip130 was located in the upstream of OSA7. Mutant analysis showed that bip130 overexpression could further enhance the activity of ABA-induced plasma membrane H+-ATPase,while bip130-RNAi prevented this process. The analysis of the protoplast transient expression system indicated that bip130 could regulate the activity of plasma membrane H+-ATPase in the ABA signaling pathway. [Conclusions] bip130 interacted with the cytoplasmic N-domain of OSA7 and bip130 participated in the regulation of plasma membrane H+-ATPase activity in ABA signaling pathway.

参考文献/References:

[1] Mittler R,Blumwald E. The roles of ROS and ABA in systemic acquired acclimation[J]. The Plant Cell,2015,27(1):64-70.
[2] Zong W,Tang N,Yang J,et al. Feedback regulation of ABA signaling and biosynthesis by a bZIP transcription factor targets drought-resistance-related genes[J]. Plant Physiology,2016,171(4):2810-2825.
[3] Janicka-Russak M,K?obus G. Modification of plasma membrane and vacuolar H+-ATPases in response to NaCl and ABA[J]. Journal of Plant Physiology,2007,164(3):295-302.
[4] Wieczorek H,Gruber G,Harvey W R,et al. Structure and regulation of insect plasma membrane H+-ATPase[J]. Journal of Experimental Biology,2000,203:127-135.
[5] Shi H Z,Quintero F J,Pardo J M,et al. The putative plasma membrane Na(+)/H(+) antiporter SOS1 controls long-distance Na(+) transport in plants[J]. The Plant Cell,2002,14(2):465-477.
[6] Gaxiola R A,Palmgren M G,Schumacher K. Plant proton pumps[J]. FEBS Letters,2007,581(12):2204-2214.
[7] Fuglsang A T,Guo Y,Cuin T A,et al. Arabidopsis protein kinase PKS5 inhibits the plasma membrane H+-ATPase by preventing interaction with 14-3-3 protein[J]. The Plant Cell,2007,19(5):1617-1634.
[8] Baker R F,Leach K A,Braun D M. SWEET as sugar:new sucrose effluxers in plants[J]. Molecular Plant,2012,5(4):766-768.
[9] Falhof J,Pedersen J T,Fuglsang A T,et al. Plasma membrane H+-ATPase regulation in the center of plant physiology[J]. Molecular Plant,2016,9(3):323-337.
[10] Toda Y,Yin W,Takahashi A,et al. Oryza sativa H+-ATPase(OSA) is involved in the regulation of dumbbell-shaped guard cells of rice[J]. Plant and Cell Physiology,2016,57(6):1220-1230.
[11] Sperandio M V L,Santos L A,Tavares O C H,et al. Reduced plasma membrane H+-ATPase isoform OsA7 expression and proton pump activity decrease growth without affecting nitrogen accumulation in rice[J]. Journal of Plant Growth Regulation,2021,40(1):67-77.
[12] Hirabayashi S,Matsushita Y,Sato M,et al. Two proton pump interactors identified from a direct phosphorylation screening of a rice cDNA library by using a recombinant BRI1 receptor kinase[J]. Plant Biotechnology,2004,21(1):35-45.
[13] 李溪. 参与ABA诱导抗氧化防护信号转导的OsDMI3互作蛋白的鉴定[D]. 南京:南京农业大学,2015. Li X. Identified the interact protein with OsDMI3 in ABA-induced antioxidant defense signaling[D]. Nanjing:Nanjing Agricultural University,2015(in Chinese with English abstract).
[14] Zhou X,Ni L,Liu Y Q,et al. Phosphorylation of bip130 by OsMPK1 regulates abscisic acid-induced antioxidant defense in rice[J]. Biochemical and Biophysical Research Communications,2019,514(3):750-755.
[15] 李婷,朱文姣,陈敏等. 茄子SmNTF3基因的克隆及其表达模式分析[J]. 南京农业大学学报,2021,44(1):103-110. DOI:10.7685/jnau.202004037. Li T,Zhu W J,Chen M,et al. Cloning and expression pattern analysis of SmNTF3 gene in eggplant[J]. Journal of Nanjing Agricultural University,2021,44(1):103-110(in Chinese with English abstract).
[16] Zhang H,Liu Y P,Wen F,et al. A novel rice C2H2-type zinc finger protein,ZFP36,is a key player involved in abscisic acid-induced antioxidant defence and oxidative stress tolerance in rice[J]. Journal of Experimental Botany,2014,65(20):5795-5809.
[17] Zhu Y,Yan J W,Liu W J,et al. Phosphorylation of a NAC transcription factor by a calcium/calmodulin-dependent protein kinase regulates abscisic acid-induced antioxidant defense in maize[J]. Plant Physiology,2016,171(3):1651-1664.
[18] Larsson C,Widell S,Sommarin M. Inside-out plant plasma membrane vesicles of high purity obtained by aqueous two-phase partitioning[J]. FEBS Letters,1988,229(2):289-292.
[19] Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Biochemistry,1976,72(1/2):248-254.
[20] Ohnishi T,Gall R S,Mayer M L. An improved assay of inorganic phosphate in the presence of extralabile phosphate compounds:application to the ATPase assay in the presence of phosphocreatine[J]. Analytical Biochemistry,1975,69(1):261-267.
[21] Xu W F,Jia L G,Shi W M,et al. Abscisic acid accumulation modulates auxin transport in the root tip to enhance proton secretion for maintaining root growth under moderate water stress[J]. New Phytologist,2013,197(1):139-150.
[22] Hartung W,Schraut D,Jiang F. Physiology of abscisic acid(ABA) in roots under stress:a review of the relationship between root ABA and radial water and ABA flows[J]. Australian Journal of Agricultural Research,2005,56(11):1253.
[23] Silva-Ortega C O,Ochoa-Alfaro A E,Reyes-Agüero J A,et al. Salt stress increases the expression of p5cs gene and induces proline accumulation in Cactus pear[J]. Plant Physiology and Biochemistry,2008,46(1):82-92.
[24] Ma F F,Ni L,Liu L B,et al. ZmABA2,an interacting protein of ZmMPK5,is involved in abscisic acid biosynthesis and functions[J]. Plant Biotechnology Journal,2016,14(2):771-782.
[25] Toyoshima C,Nomura H,Tsuda T. Lumenal gating mechanism revealed in calcium pump crystal structures with phosphate analogues[J]. Nature,2004,432(7015):361-368.
[26] Kinoshita T,Shimazaki K I. Biochemical evidence for the requirement of 14-3-3 protein binding in activation of the guard-cell plasma membrane H+-ATPase by blue light[J]. Plant and Cell Physiology,2002,43(11):1359-1365.
[27] Niittyl? T,Fuglsang A T,Palmgren M G,et al. Temporal analysis of sucrose-induced phosphorylation changes in plasma membrane proteins of Arabidopsis[J]. Molecular & Cellular Proteomics,2007,6(10):1711-1726.
[28] Morsomme P,Dambly S,Maudoux O,et al. Single point mutations distributed in 10 soluble and membrane regions of the Nicotiana plumbaginifolia plasma membrane PMA2 H+-ATPase activate the enzyme and modify the structure of the C-terminal region[J]. Journal of Biological Chemistry,1998,273(52):34837-34842.

备注/Memo

备注/Memo:
收稿日期:2020-06-25。
基金项目:国家自然科学基金项目(31471427)
作者简介:张雅芬,硕士研究生。
通信作者:蒋明义,教授,博导,研究方向为植物逆境生理与分子生物学,E-mail:myjiang@njau.edu.cn。
更新日期/Last Update: 1900-01-01