[1]黄维,程雪,潘妮,等.甘露糖对镉胁迫下小麦生长、镉转运和氧化胁迫的影响[J].南京农业大学学报,2021,44(3):468-476.[doi:10.7685/jnau.202007021]
 HUANG Wei,CHENG Xue,PAN Ni,et al.Effects of mannose on wheat(Triticum aestivum L.) growth,cadmium transport and oxidative stress under cadmium stress[J].Journal of Nanjing Agricultural University,2021,44(3):468-476.[doi:10.7685/jnau.202007021]
点击复制

甘露糖对镉胁迫下小麦生长、镉转运和氧化胁迫的影响()
分享到:

《南京农业大学学报》[ISSN:1000-2030/CN:32-1148/S]

卷:
44卷
期数:
2021年3期
页码:
468-476
栏目:
生物与环境
出版日期:
2021-05-10

文章信息/Info

Title:
Effects of mannose on wheat(Triticum aestivum L.) growth,cadmium transport and oxidative stress under cadmium stress
作者:
黄维 程雪 潘妮 沈振国 陈亚华 陆巍
南京农业大学生命科学学院, 江苏 南京 210095
Author(s):
HUANG Wei CHENG Xue PAN Ni SHEN Zhenguo CHEN Yahua LU Wei
College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
关键词:
小麦Cd胁迫甘露糖谷胱甘肽iTRAQ比较蛋白组
Keywords:
wheatcadmium stressmannoseglutathioneiTRAQ proteome
分类号:
S512;Q945.78
DOI:
10.7685/jnau.202007021
摘要:
[目的] 本文旨在阐述喷施甘露糖缓解小麦镉(Cd)胁迫和抑制Cd转运的分子机制。[方法] 测定小麦生长、生理、生化指标和分析根系蛋白组学差异,经过KEGG和GO注释方法分析差异蛋白所涉途径的相关信息,进一步用Real-time PCR验证差异表达蛋白。[结果] 甘露糖处理15 d后,小麦根长和根干重分别增加54.8%和29.5%;地上部Cd总含量减少33.6%,而地下部增加58.1%。Cd转运系数减小47.7%,小麦Cd转运被抑制。叶片和根中谷胱甘肽(GSH)含量分别增加11.1%和42.8%,氧化型谷胱甘肽(GSSG)含量分别减少43.2%和49.3%。叶片和根活性氧分子的积累减少,表明小麦所受氧化胁迫减轻。甘露糖处理后,谷胱甘肽还原酶(GR)活性明显升高,过氧化氢酶(CAT)和超氧化物歧化酶(SOD)活性没有明显变化。处理后根中共有222个蛋白质发生显著变化,分别属于谷胱甘肽代谢、氮代谢、磷酸戊糖途径(PPP)、糖酵解/糖异生、氰氨基酸代谢、次生代谢产物和苯丙烷生物合成等途径。其中,谷胱甘肽代谢途径中有5个谷胱甘肽-S-转移酶(GST)差异丰度蛋白(DAP),选择其中差异变化最大的GSTU6用于Real-time PCR验证,其表达量显著增加,合成GSH前体物的GLN1-2以及Prx135的表达量也显著增加。[结论] 甘露糖能增强谷胱甘肽清除活性氧能力,缓解小麦Cd胁迫,减少Cd转运。
Abstract:
[Objectives] This article aimed to explore the molecular mechanism of mannose spraying to relieve wheat cadmium stress and inhibit cadmium transfer. [Methods] The growth,physiological and biochemical indexes,as well as the comparation proteomics of root were assayed. Relevant information of the pathway involved in the differential proteins through the KEGG(Kyoto encyclopedia of genes and genomes) and GO(gene ontology) annotation was analyzed,and the differential protein expressions by real-time PCR were further verified. [Results] After 15 days of mannose treatment,the root length and root dry weight increased significantly by 54.8% and 29.5%,respectively. The total amount of Cd decreased by 33.6% in shoot,while increased by 58.1% in root. Moreover,the transport coefficient decreased by 47.7%,which indicated Cd transfer was inhibited. The glutathione(GSH) content in leaves and roots increased by 11.1% and 42.8%,respectively,while the oxidized glutathione(GSSG) content decreased by 43.2% and 49.3%,respectively. The accumulation of reactive oxygen molecules in leaves and roots were reduced,which alleviated oxidative stress. After mannose treatment,there was no significant change in catalase(CAT) and superoxide dismutase(SOD) activities except glutathione reductase(GR) activity. A total of 222 proteins in the roots changed significantly after treatment,belonging to metabolism pathways,i.e. glutathione metabolism,nitrogen metabolism,pentose phosphate pathway,glycolysis/gluconeogenesis,cyanoamino acid metabolism,secondary metabolite biosynthesis and phenylpropane synthesis. There were 5 glutathione-S-transferase(GST) differential abundance proteins(DAP) in the glutathione metabolic pathway,and the GSTU6 with the largest variation was selected for verification by real-time PCR,and its expression results significantly increased. In addition,the expression of GLN1-2 which affected the synthesis of GSH precursors and Prx135 which affected the clearance of peroxides significantly increased. [Conclusions] Mannose promoted the glutathione to remove active oxygen species,which relieved cadmium stress and block cadmium transport in wheat.

参考文献/References:

[1] Singh R P,Agrawal M. Effects of sewage sludge amendment on heavy metal accumulation and consequent responses of Beta vulgaris plants[J]. Chemosphere,2007,67(11):2229-2240.
[2] 綦峥,齐越,杨红,等. 土壤重金属镉污染现状、危害及治理措施[J]. 食品安全质量检测学报,2020,11(7):2286-2294. Qi Z,QI Y,Yang H,et al. Status,harm and treatment measures of heavy metal cadmium pollution in soil[J]. Journal of Food Safety & Quality,2020,11(7):2286-2294(in Chinese with English abstract).
[3] Dias M C,Monteiro C,Moutinho-Pereira J,et al. Cadmium toxicity affects photosynthesis and plant growth at different levels[J]. Acta Physiologiae Plantarum,2013,35(4):1281-1289.
[4] Lin Y F,Aarts M G M. The molecular mechanism of zinc and cadmium stress response in plants[J]. Cellular and Molecular Life Sciences,2012,69(19):3187-3206.
[5] Asgher M,Khan M I R,Anjum N A,et al. Minimising toxicity of cadmium in plantsroleof plant growth regulators[J]. Protoplasma,2015,252(2):399-413.
[6] Wu Q,Su N N,Cai J T,et al. Hydrogen-rich water enhances cadmium tolerance in Chinese cabbage by reducing cadmium uptake and increasing antioxidant capacities[J]. Journal of Plant Physiology,2015,175:174-182.
[7] Rizwan M,Meunier J D,Davidian J C,et al. Silicon alleviates Cd stress of wheat seedlings(Triticum turgidum L. cv. Claudio) grown in hydroponics[J]. Environmental Science and Pollution Research,2016,23(2):1414-1427.
[8] Wheeler G L,Jones M A,Smirnoff N. The biosynthetic pathway of vitamin C in higher plants[J]. Nature,1998,393(6683):365-369.
[9] Chen J,Yang L B,Gu J,et al. MAN3 gene regulates cadmium tolerance through the glutathione-dependent pathway in Arabidopsis thaliana[J]. New Phytologist,2015,205(2):570-582.
[10] 马文佳,盛义保,韩洋洋,等. 甘露糖促进小白菜对重金属镉耐受研究[J]. 合肥工业大学学报(自然科学版),2018,41(8):1130-1133,1148. Ma W J,Sheng Y B,Han Y Y,et al. Promotion effect of mannose on soil heavy metal cadmium tolerance in Brassica campestris[J]. Journal of Hefei University of Technology(Natural Science Edition),2018,41(8):1130-1133,1148(in Chinese with English abstract).
[11] Jafarnejadi A R,Homaee M,Sayyad G,et al. Large scale spatial variability of accumulated cadmium in the wheat farm grains[J]. Soil and Sediment Contamination,2011,20(1):98-113.
[12] Jabs T,Dietrich R A,Dangl J L. Initiation of runaway cell death in an Arabidopsis mutant by extracellular superoxide[J]. Science,1996,273(5283):1853-1856.
[13] Hodges D M,DeLong J M,Forney C F,et al. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds[J]. Planta,1999,207(4):604-611.
[14] Velikova V,Yordanov I,Edreva A. Oxidative stress and some antioxidant systems in acid rain-treated bean plants:protective role of exogenous polyamines[J]. Plant Science,2000,151(1):59-66.
[15] Lei Q C,Bi J C,Wang X Y,et al. GLP-2 prevents intestinal mucosal atrophy and improves tissue antioxidant capacity in a mouse model of total parenteral nutrition[J]. Nutrients,2016,8(1):33.
[16] 王学奎,李合生,刘武定. 光对小麦叶片谷氨酰胺合成酶调节机理初探[J]. 华中农业大学学报,2000,19(2):102-105. Wang X K,Li H S,Liu W D. Preliminary study on mechanism of light regulated glutamine synthetase in wheat leaves[J]. Journal of Huazhong Agricultural,2000,19(2):102-105(in Chinese with English abstract).
[17] 程艳,陈璐,米艳华,等. 水稻抗氧化酶活性测定方法的比较研究[J]. 江西农业学报,2018,30(2):108-111. Cheng Y,Chen L,Mi Y H,et al. Comparative study on various methods for determination of activity of antioxidant enzymes in rice[J]. Acta Agriculturae Jiangxi,2018,30(2):108-111(in Chinese with English abstract).
[18] Marrs K A,Walbot V. Expression and RNA splicing of the maize glutathione S-transferase bronze2 gene is regulated by cadmium and other stresses[J]. Plant Physiology,1997,113(1):93-102.
[19] 冯欣,杜宇,潘坤,等. 谷胱甘肽硫转移酶与氧化应激[J]. 医学研究与教育,2010,27(5):80-83. Feng X,Du Y,Pan K,et al. Glutathione S-transferases and its oxidative stress[J]. Medical Research and Education,2010,27(5):80-83(in Chinese with English abstract).
[20] 王欣欣,邓明华,龚明,等. Cd2+胁迫对小桐子幼苗叶片抗氧化系统的影响[J]. 西北植物学报,2016,36(3):527-533. Wang X X,Deng M H,Gong M,et al. Effect of Cd2+ Stress on antioxidant system in the leaves of Jatropha curcas seedlings[J]. Acta Botanica Boreali-Occidentalia Sinica,2016,36(3):527-533(in Chinese with English abstract).
[21] 徐莞媛,马杭柯,孙金秋,等. 脊尾白虾甘露糖结合凝集素(MBL)基因在抗镉胁迫中的生物学功能分析[J]. 渔业科学进展,2020,41(4):174-180. Xu W Y,Ma H K,Sun J Q,et al. Biological functional analysis of MBL gene in resistance to cadmium stress in Exopalaemon carinicaud[J]. Progress in Fishery Sciences,2020,41(4):174-180(in Chinese with English abstract).
[22] Lv Y,Deng X P,Quan L T,et al. Metallothioneins BcMT1 and BcMT2 from Brassica campestris enhance tolerance to cadmium and copper and decrease production of reactive oxygen species in Arabidopsis thaliana[J]. Plant and Soil,2013,367(1/2):507-519.
[23] Rui H Y,Chen C,Zhang X X,et al. Cd-induced oxidative stress and lignification in the roots of two Vicia sativa L. varieties with different Cd tolerances[J]. Journal of Hazardous Materials,2016,301:304-313.
[24] Chmielowska-Bak J,Izbiańska K,Ekner-Grzyb A,et al. Cadmium stress leads to rapid increase in RNA oxidative modifications in soybean seedlings[J]. Frontiers in Plant Science,2018,8:2219.
[25] 尚玉坤,刘思凯,陈杨晗,等. 镉胁迫对东营野生大豆幼苗抗氧化系统及可溶性蛋白的影响[J]. 四川农业大学学报,2019,37(1):15-21. Shang Y K,Liu S K,Chen Y H,et al. Effects of antioxidant system and soluble protein in Dongying wild soybean seedling under cadmium stress[J]. Journal of Sichuan Agricultural University,2019,37(1):15-21(in Chinese with English abstract).
[26] Ozfidan-Konakci C,Kabakci M. The impacts of gallic acid on redox state of antioxidants related to ascorbate:glutathione cycle in wheat(Triticum aestivum) grown under cadmium toxicity[J]. Agricultural Research,2020,9(4):543-553.
[27] Mishra S,Tripathi R D,Srivastava S,et al. Thiol metabolism play significant role during cadmium detoxification by Ceratophyllum demersum L.[J]. Bioresource Technology,2009,100(7):2155-2161.

相似文献/References:

[1]李培培,张皛,潘小玫,等.截短的小麦冷胁迫反应蛋白基因片段TA3-13的融合表达、纯化与诱导抗TMV功能研究[J].南京农业大学学报,2010,33(1):54.[doi:10.7685/j.issn.1000-2030.2010.01.011]
 LI Pei-pei,ZHANG Xiao,PAN Xiao-mei,et al.His-tag fusion expression,purification and TMV resistance induction of truncated wheat cold shock protein gene fragment TA3-13[J].Journal of Nanjing Agricultural University,2010,33(3):54.[doi:10.7685/j.issn.1000-2030.2010.01.011]
[2]杨铁钢,戴廷波,曹卫星.施氮水平对不同品质类型小麦花后碳氮同化和转运的影响[J].南京农业大学学报,2008,31(2):6.[doi:10.7685/j.issn.1000-2030.2008.02.002]
 YANG Tie-gang,DAI Ting-bo,CAO Wei-xing.Effects of nitrogen rates on assimilation and translocation of carbon and nitrogen after anthesis in two wheat cultivars[J].Journal of Nanjing Agricultural University,2008,31(3):6.[doi:10.7685/j.issn.1000-2030.2008.02.002]
[3]张敏,戴延波,姜东,等.6-BA对小麦花后C/N物质运转和籽粒品质的影响[J].南京农业大学学报,2006,29(4):6.[doi:10.7685/j.issn.1000-2030.2006.04.002]
 ZHANG Min,DAI Ting-bo,JIANG Dong,et al.Effects of 6-BA on carbon and nitrogen assimilate translocation after anthesis and quality formation in wheat[J].Journal of Nanjing Agricultural University,2006,29(3):6.[doi:10.7685/j.issn.1000-2030.2006.04.002]
[4]王莉芳,戴延波,荆奇,等.不同生态点播期对小麦籽粒戊聚糖含量的影响[J].南京农业大学学报,2006,29(4):11.[doi:10.7685/j.issn.1000-2030.2006.04.003]
 WANG Li-fang,DAI Ting-bo,JING Qi,et al.Effect of sowing dates on pentosan content in wheat grains at different ecological sites[J].Journal of Nanjing Agricultural University,2006,29(3):11.[doi:10.7685/j.issn.1000-2030.2006.04.003]
[5]亓增军,裴自友,韩航如,等.利用DONtest-HPLC检测小麦镰刀菌毒素DON含量的差异[J].南京农业大学学报,2005,28(3):6.[doi:10.7685/j.issn.1000-2030.2005.03.002]
[6]刘德辉,赵海燕,郑秀仁,等.氨基酸螯合微肥对小麦和后作水稻产量及品质的影响[J].南京农业大学学报,2005,28(2):0.[doi:10.7685/j.issn.1000-2030.2005.02.012]
[7]荆奇,戴廷波,姜东,等.不同生态条件下不同基因型小麦干物质和氮素积累与分配特征[J].南京农业大学学报,2004,27(1):1.[doi:10.7685/j.issn.1000-2030.2004.01.001]
 JING Qi,DAI Ting bo,JIANG Dong,et al.Characteristics of accumulation and translocation of dry matter and nitrogen in wheat genotypes under different environments[J].Journal of Nanjing Agricultural University,2004,27(3):1.[doi:10.7685/j.issn.1000-2030.2004.01.001]
[8]张江丽,蔡士宾,张光祥,等.马卡小麦耐湿性的RAPD 标记及定位研究[J].南京农业大学学报,2003,26(2):7.[doi:10.7685/j.issn.1000-2030.2003.02.002]
 ZHANG Jiang li,CAI Shi bin,ZHANG Guang xiang,et al.Genetic mapping of genes conferring waterlogging-tolerance in Triticum macha using RAPD markers[J].Journal of Nanjing Agricultural University,2003,26(3):7.[doi:10.7685/j.issn.1000-2030.2003.02.002]
[9]陈佩度,张守忠,王秀娥,等.抗白粉病高产小麦新品种南农9918[J].南京农业大学学报,2002,25(4):105.[doi:10.7685/j.issn.1000-2030.2002.04.025]
 CHEN Pei du,ZHANG Shou zhong,WANG Xiu e,et al.New wheat variety Nannong 9918 with high yield and powdery mildew resistance[J].Journal of Nanjing Agricultural University,2002,25(3):105.[doi:10.7685/j.issn.1000-2030.2002.04.025]
[10]周琴,姜东,戴廷波,等.不同基因型小麦籽粒蛋白质和淀粉积累与碳氮转运的关系[J].南京农业大学学报,2002,25(3):1.[doi:10.7685/j.issn.1000-2030.2002.03.001]
 ZHOU Qin,JIANG Dong,DAI Ting bo,et al.Grain protein and starch accumulation and its relationship to remobilization of carbon and nitrogen in different wheat genotypes[J].Journal of Nanjing Agricultural University,2002,25(3):1.[doi:10.7685/j.issn.1000-2030.2002.03.001]

备注/Memo

备注/Memo:
收稿日期:2020-07-13。
基金项目:国家重点研发计划项目(2016YFD0800700)
作者简介:黄维,硕士研究生。
通信作者:陆巍,副教授,研究方向为植物光合生理,E-mail:luw@njau.edu.cn。
更新日期/Last Update: 1900-01-01