[1]张潘杰,窦振国,王浩,等.9株昆虫病原线虫共生菌菌株的分离、鉴定及其抗菌谱的筛选[J].南京农业大学学报,2021,44(3):487-496.[doi:10.7685/jnau.202007035]
 ZHANG Panjie,DOU Zhenguo,WANG Hao,et al.Isolation,identification and screening of antifungal spectrum of nine entomopathogenic nematode symbiotic bacterial strains[J].Journal of Nanjing Agricultural University,2021,44(3):487-496.[doi:10.7685/jnau.202007035]
点击复制

9株昆虫病原线虫共生菌菌株的分离、鉴定及其抗菌谱的筛选()
分享到:

《南京农业大学学报》[ISSN:1000-2030/CN:32-1148/S]

卷:
44卷
期数:
2021年3期
页码:
487-496
栏目:
生物与环境
出版日期:
2021-05-10

文章信息/Info

Title:
Isolation,identification and screening of antifungal spectrum of nine entomopathogenic nematode symbiotic bacterial strains
作者:
张潘杰 窦振国 王浩 包浩然 张克云
南京农业大学生命科学学院, 江苏 南京 210095
Author(s):
ZHANG Panjie DOU Zhenguo WANG Hao BAO Haoran ZHANG Keyun
College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
关键词:
昆虫病原线虫共生菌分离方法抗菌谱菌丝生长分生孢子萌发16S rDNA
Keywords:
entomopathogenic nematode symbiotic bacteriaisolation methodantifungal spectrummycelium growthconidia germination16S rDNA
分类号:
S432
DOI:
10.7685/jnau.202007035
摘要:
[目的] 本文旨在探讨9株昆虫病原线虫(entomopathogenic nematode,EPN)共生菌菌株的高效分离鉴定方法以及其对植物真菌病害的拮抗能力。[方法] 采用研磨法、血淋巴涂布法和改良涂布法对7种斯氏线虫科(Steinernematidae)和2种异小杆科(Heterorhabditidae) EPN的共生菌进行分离。通过测定其16S rDNA序列进行同源性分析和分子系统发育树分析以鉴定共生菌的种属。采用平板菌丝抑制法测定这9株共生菌的抗病原真菌谱。挑选综合抑菌效果最好的2株共生菌菌株进行稀释和组分分离,测试各组分对真菌的菌丝生长和镰刀菌属分生孢子萌发的抑制效率。[结果] 改良涂布法分离到的共生菌平均菌落数为124.0,明显多于传统的研磨法和血淋巴涂布法(分别为8.2和67.7),同时被污染的概率也低。9株共生菌中有7株属于致病杆菌属(Xenorhadus)的5个种,2株属于发光杆菌属(Photorhabdus)的2个种。9株共生菌对稻瘟病菌、尖孢镰刀菌西瓜专化型、尖孢镰刀菌黄瓜专化型、灰葡萄孢菌和辣椒疫霉均有抑制能力。其中,伯氏致病杆菌(Xenorhadus bovienii) NN6和NN8对5种真菌菌丝生长的抑制效率最高,均大于45%。NN6发酵液的5倍稀释液对辣椒疫霉菌丝生长的抑制效率为51.99%,显著高于NN8(45.46%)。NN8发酵液原液对尖孢镰刀菌黄瓜专化型孢子萌发的抑制效率为88.16%,显著高于NN6(81.79%)。[结论] 改良的血淋巴涂布法是1种高效分离昆虫病原线虫共生菌的方法,分离到的9株共生菌对5种常见植物病原真菌的生长具有很强的抑制作用,其中伯氏致病杆菌NN6和NN8对菌丝生长的综合抑制能力最强。
Abstract:
[Objectives] The present study aimed to explore the efficient method for the isolation and identification of the symbiotic bacteria from their entomopathogenic nematode(EPN) partner and their inhibition ability against plant pathogenic fungi,so as to provide theory basis for the biological control of these fungal diseases in plants. [Methods] The symbiotic bacteria of 7 EPN of the family Steinernematidae and 2 of the family Heterorhabditidae were isolated by grinding,hemolymph coating and modified coating methods. The 16S rDNA sequences were determined and used to identify the taxonomy position of the isolated symbiotic bacteria in species level by homology analysis and molecular phylogenetic analysis. The antifungal spectrum of these 9 symbiotic bacterial strains was determined by plate mycelium inhibition method. Two symbiotic strains with the best comprehensive antifungal efficiency were selected for component separation,then the inhibitory efficiency of diluted bacterial suspension and sterile filtrate on mycelia growth and conidia germination of Fusarium spp. were tested. [Results] The average number of symbiotic bacterial colonies isolated by the modified coating method in this study was 124.0,which was significantly more than the traditional grinding method and hemolymph coating method,which were 8.2 and 67.7 respectively,and the probability of contamination was also low. Seven of the 9 strains belong to 5 species of the genus Xenorhabdus,and 2 belong to 2 species of the genus Photorhabdus. The 9 bacterial strains had significant inhibitory ability against Magnaporthe grisea,Fusarium oxysporum f. sp. niveum,Fusarium oxysporium f. sp. cucumerinum,Botrytis cinerea and Phytophthora capsici. Xenorhadus bovienii,strains NN6 and NN8 showed the highest comprehensive inhibition rate on the mycelium growth of the above-mentioned five plant pathogenic fungi with inhibitory rates more than 45%. The 5-fold dilution of NN6 fermentation broth inhibited the growth of Phytophthora capsici by 51.99%,which was significantly higher than NN8(45.46%). The inhibitory rate of NN8 fermentation broth on the germination of conidia of Fusarium oxysporium f. sp. cucumerinum was 88.16%,which was significantly higher than that of NN6(81.79%). [Conclusions] The modified coating method determined in this study was an efficient method for isolating symbiotic bacteria from EPN. The 9 symbiotic bacterial strains isolated had a strong inhibitory effect on the growth of five common plant pathogenic fungi,among which X.bovienii NN6 and X.bovienii NN8 had the strongest comprehensive inhibitory ability on mycelium growth.

参考文献/References:

[1] Kaya H K,Gaugler R. Entomopathogenic Nematodes[J]. Annual Review of Entomology,1993,38(1):181-206.
[2] Kepenekci I,Atay T,Alkan M. Biological control potential of Turkish entomopathogenic Nematodes against the Colorado potato beetle,Leptinotarsa decemlineata[J]. Biocontrol Science and Technology,2016,26(1):141-144.
[3] Grewal P S,Lewis E E,Gaugler R,et al. Host finding behavior as a predictor of foraging strategy in entomopathogenic Nematodes[J]. Parasitology,1994,108(2):207-215.
[4] Zhang C X,Liu J,Xu M,et al. Heterorhabditidoides chongmingensis gen. nov,sp. nov.(Rhabditida:Rhabditidae),a novel member of the entomopathogenic Nematodes[J]. Journal of Invertebrate Pathology,2008,98(2):153-168.
[5] Zhang K Y,Liu X H,Tan J,et al. Heterorhabditidoides rugaoensis n. sp.(Rhabditida:Rhabditidae),a novel highly pathogenic entomopathogenic nematode member of Rhabditidae[J]. Journal of Nematology,2012,44(4):348-360.
[6] Yu F,Tian X M,Sun Y,et al. Xenocyloin derivatives from liquid cultures of Xenorhabdus bovienii SN52[J]. Natural Product Communications,2017,12(12):1851-1854.
[7] Vezzulli L,Stagnaro L,Grande C,et al. Comparative 16S rDNA gene-based microbiota profiles of the Pacific oyster(Crassostrea gigas) and the Mediterranean mussel(Mytilus galloprovincialis) from a Shellfish Farm(Ligurian sea,Italy)[J]. Microbial Ecology,2018,75(2):495-504.
[8] Han R,Ehlers R U. Pathogenicity,development,and reproduction of Heterorhabditis bacteriophora and Steinernema carpocapsae under axenic in vivo conditions[J]. Journal of Invertebrate Pathology,2000,75(1):55-58.
[9] Ogier J C,Pages S,Frayssinet M,et al. Entomopathogenic nematode-associated microbiota:from monoxenic paradigm to pathobiome[J]. Microbiome,2020,8(1):25.
[10] Fang X L,Li Z Z,Wang Y H,et al. In vitro and in vivo antimicrobial activity of Xenorhabdus bovienii YL002 against Phytophthora capsici and Botrytis cinerea[J]. Journal of Applied Microbiology,2011,111(1):145-154.
[11] Hazir S,Shapiro-Ilan D I,Bock C H,et al. Relative potency of culture supernatants of Xenorhabdus and Photorhabdus spp. on growth of some fungal phytopathogens[J]. European Journal of Plant Pathology,2016,146(2):369-381.
[12] Liu J,Song P,Zhang J,et al. Characteristics anti function of the chitin binding protein from Xenorhabdus nematophila[J]. Protein and Peptide Letters,2019,26(6):414-422.
[13] Guo S,Zhang S,Fang X,et al. Regulation of antimicrobial activity and xenocoumacins biosynthesis by pH in Xenorhabdus nematophila[J]. Microbial Cell Factories,2017,16(1):203.
[14] Wang H,Dong H,Qian H,et al. Laboratory assessment of entomopathogenic nematode symbiotic bacteria to control maize pest,Ostrinia furnacalis,and fungi diseases,Bipolaris maydis and Curvularia lunata[J]. Journal of Asia-Pacific Entomology,2014,17(4):823-827.
[15] Chen G,Maxwell P,Dunphy G B,et al. Culture conditions for Xenorhabdus and Photorhabdus symbionts of entomopathogenic Nematodes[J]. Nematologica,1996,42(1):124-127.
[16] Dreyer J,Rautenbach M,Booysen E,et al. Xenorhabdus khoisanae SB10 produces Lys-rich PAX lipopeptides and a xenocoumacin in its antimicrobial complex[J]. BMC Microbiology,2019,19(1):132.
[17] Muangpat P,Yooyangket T,Fukruksa C,et al. Screening of the antimicrobial activity against drug resistant bacteria of Photorhabdus and Xenorhabdus associated with entomopathogenic Nematodes from mae wong National Park,Thailand[J]. Frontiers in Microbiology,2017,8:1142.
[18] Li J X,Chen G H,Webster J M. Nematophin,a novel antimicrobial substance produced by Xenorhabdus nematophila(Enterobacteriaceae)[J]. Canadian Journal of Microbiology,1997,43(8):770-773.
[19] 任义方,高苹,朱凤.江苏省稻瘟病发生程度的气象等级预报[J]. 江苏农业科学,2016,44(8):151-154,161. Ren Y F,Gao P,Zhu F. Meteorological grade prediction of rice blast incidence in Jiangsu Province[J]. Jiangsu Agricultural Science,2016,44(8):151-154,161(in Chinese).
[20] 刘爱轩,张海,季长勤.西瓜枯萎病的绿色防控配套技术研究[J]. 农家参谋,2017(13):13. Liu A X,Zhang H,Ji C Q. Research on supporting technologies for green prevention and control of watermelon fusarium wilt[J]. Agricultural Staff,2017(13):13(in Chinese).
[21] 刘婷婷.我国不同地区辣椒疫霉群体遗传结构和抗药性分析[D]. 扬州:扬州大学,2016. Liu T T. Genetic structure and drug resistance analysis of Phytophthora capsici populations in different regions of China[D]. Yangzhou:Yangzhou University,2016(in Chinese with English abstract).
[22] McCallum B D,Tekauz A,Gilbert J. Barrage zone formation between vegetatively incompatible Fusarium graminearum(Gibberella zeae) isolates[J]. Phytopathology,2004,94(5):432-437.
[23] Poinar G O,Thomas G M. Significance of Achromobacter nematophilus Poinar and Thomas(Achromobacteriaceae:Eubacteriales) in the development of the nematode,DD-136(Neoaplectana sp. Steinernematidae)[J]. Parasitology,1966,56(2):385-390.
[24] Akhurst R J. Morphological and functional dimorphism in Xenorhabdus spp.,bacteria symbiotically associated with the insect pathogenic Nematodes neoaplectana and Heterorhabditis[J]. Journal of General Microbiology,1980,121(2):303-309.
[25] Amer S,Basaid S A,Ali E. Molecular identification of Rosa×damascena growing in Taif region(Saudi Arabia)[J]. International Journal of Plant Biology,2016,7(1):7-10.
[26] 王永宏,张兴. 2株昆虫病原线虫共生菌代谢产物的抑菌作用[J]. 西北农林科技大学学报(自然科学版),2007,35(2):125-130. Wang Y H,Zhang X. Antifungal effects of metabolites from two strains of entomopathogenic nematode symbiotic bacteria[J]. Journal of Northwest A&F University(Natural Science Edition),2007,35(2):125-130(in Chinese with English abstract).
[27] Tarazona A,Gomez J V,Mateo E M,et al. Antifungal effect of engineered silver nanoparticles on phytopathogenic and toxigenic Fusarium spp. and their impact on mycotoxin accumulation[J]. International Journal of Food Microbiology,2019,306:108259.
[28] 刘明星,丘雪红,赵园园,等. 昆虫病原线虫感染期幼虫恢复发育的研究进展[J]. 昆虫学报,2008,51(2):197-203. Liu M X,Qiu X H,Zhao Y Y,et al. Research on developmental recovery of entomopathogenic Nematodes infective juveniles[J]. Acta Entomology,2008,51(2):197-203(in Chinese with English abstract).
[29] Ulug D,Hazir C,Hazir S. A new and simple technique for the isolation of symbiotic bacteria associated with entomopathogenic nematodes(Heterorhabditidae and Steinernematidae)[J]. Turkish Journal of Zoology,2015,39(2):365-367.
[30] Mathur C,Phani V,Kushwah J,et al. TcaB,an insecticidal protein from Photorhabdus akhurstii causes cytotoxicity in the greater wax moth,Galleria mellonella[J]. Pesticide Biochemistry and Physiology,2019,157:219-229.
[31] Fraser C M. Microbial genome sequencing:new insights into physiology and evolution[J]. Novartis Foundation Symposium,2000,229:54-58.
[32] Gupta A,Sharma V K. Using the taxon-specific genes for the taxonomic classification of bacterial genomes[J]. Bmc Genomics,2015,16(1):396.
[33] 李宗泽. 伯氏致病杆菌YL002的抗菌活性研究及其cpxRA基因的敲除[D]. 杨凌:西北农林科技大学,2011. Li Z Z. Study on the antibacterial activity of Xenorhabdus bovienii YL002 and its cpxRA gene knockout[D]. Yangling:Northwest A&F University,2011(in Chinese with English abstract).
[34] Isaacson P J,Webster J M. Antimicrobial activity of Xenorhabdus sp. RIO(Enterobacteriaceae),symbiont of the entomopathogenic nematode,Steinernema riobrave(Rhabditida:Steinernematidae)[J]. Journal of Invertebrate Pathology,2002,79(3):146-153.
[35] 马丽丽,许艳丽,台莲梅.昆虫病原线虫共生细菌对植物病原菌的抑制作用[J]. 植物保护,2007,33(4):7-11. Ma L L,Xu Y L,Tai L M. Inhibitory effect of entomopathogenic Nematodes symbiotic bacteria on plant pathogens[J]. Plant Protection,2007,33(4):7-11(in Chinese with English abstract).
[36] 张春珍,石丹姝,张文波,等. 伯氏致病杆菌SN269发酵液中madumycin Ⅱ的分离与纯化[J]. 农药学学报,2016,18(6):783-786. Zhang C Z,Shi D S,Zhang W B,et al. Isolation and purification of madumycin Ⅱ in Xenorhabdus bovienii SN259 fermentation broth[J]. Journal of Agrochemistry,2016,18(6):783-786(in Chinese with English abstract).
[37] Li Z K,Ye X F,Liu M X,et al. A novel outer membrane beta-1,6-glucanase is deployed in the predation of fungi by myxobacteria[J]. The ISME Journal,2019,13(9):2223-2235.
[38] 庞浩.江苏黄海农场小麦赤霉病发生特点与防治研究[D]. 扬州:扬州大学,2018. Pang H. Occurrence characteristics and control of wheat scab in Yellow Sea farm,Jiangsu Province[D]. Yangzhou:Yangzhou University,2018(in Chinese with English abstract).

相似文献/References:

[1]徐漫,蔡翰林,张克云.昆虫病原线虫共生菌Serratia nematodiphila DR186对果蝇致病机制的研究[J].南京农业大学学报,2017,40(5):827.[doi:10.7685/jnau.201611037]
 XU Man,CAI Hanlin,ZHANG Keyun.Pathogenesis of entomopathogenic nematode symbiotic bacterial strain Serratia nematodiphila DR186 against fruit flies[J].Journal of Nanjing Agricultural University,2017,40(3):827.[doi:10.7685/jnau.201611037]

备注/Memo

备注/Memo:
收稿日期:2020-07-23。
基金项目:国家重点研发计划专项(2018YFC1200201);江苏省农业科技自主创新资金项目[X(19)2009]
作者简介:张潘杰,硕士研究生。
通信作者:张克云,副教授,主要从事抗病虫生物及其活性物质资源研究,E-mail:keyunzhang@njau.edu.cn。
更新日期/Last Update: 1900-01-01