[1]唐荣宏,范莉莉,王冬雪,等.禽流感DNA疫苗(H5亚型Re-8株)对黄羽肉鸡免疫程序的优化[J].南京农业大学学报,2021,44(3):521-525.[doi:10.7685/jnau.202003008]
 TANG Ronghong,FAN Lili,WANG Dongxue,et al.The immune program optimization of avian influenza DNA vaccine(H5 subtype Re-8 strain) on Yellow broiler[J].Journal of Nanjing Agricultural University,2021,44(3):521-525.[doi:10.7685/jnau.202003008]
点击复制

禽流感DNA疫苗(H5亚型Re-8株)对黄羽肉鸡免疫程序的优化()
分享到:

《南京农业大学学报》[ISSN:1000-2030/CN:32-1148/S]

卷:
44卷
期数:
2021年3期
页码:
521-525
栏目:
动物科学
出版日期:
2021-05-10

文章信息/Info

Title:
The immune program optimization of avian influenza DNA vaccine(H5 subtype Re-8 strain) on Yellow broiler
作者:
唐荣宏 范莉莉 王冬雪 李亚杰 郁宏伟 杨保收 鲍恩东
天津瑞普生物技术股份有限公司, 天津 300308
Author(s):
TANG Ronghong FAN Lili WANG Dongxue LI Yajie YU Hongwei YANG Baoshou BAO Endong
Tianjin Ringpu Bio-Technology Co., Ltd., Tianjin 300308, China
关键词:
DNA疫苗抗体禽流感黄羽肉鸡
Keywords:
DNA vaccineantibodyavian influenzaYellow broiler
分类号:
Q785
DOI:
10.7685/jnau.202003008
摘要:
[目的] 本试验旨在探索禽流感DNA疫苗(H5亚型Re-8株)对黄羽肉鸡的免疫效果及合理的免疫程序。[方法] 选取1日龄健康未免疫禽流感疫苗的黄羽肉鸡210羽,随机分为7组,每组30羽,其中A、B、C 3组为单次免疫试验组,分别于1、10和14日龄免疫禽流感DNA疫苗,每羽30 μg;D、E、F组为加强免疫试验组,D、E 2组分别于14和10日龄免疫禽流感DNA疫苗,每羽30 μg,3周后D组加强免疫同种疫苗,每羽30 μg,E组加强免疫H5禽流感D7+rD8二价灭活疫苗,每羽0.3 mL;F组为灭活苗对照组,于10和31日龄分别免疫0.3 mL H5禽流感D7+rD8二价灭活疫苗;G组为空白对照组。各组受试鸡于免疫前和免疫后每周(后期每2周)采集血液并测定血清HI效价,研究受试鸡母源抗体和免疫期抗体的消长规律。[结果] 黄羽肉鸡母源抗体HI效价至14日龄降至3.5,抗体合格率低于40%。单次免疫禽流感DNA疫苗时,14和10日龄免后1~2周HI抗体开始升高,1日龄免疫后3周抗体持续下降。禽流感DNA疫苗或二价灭活疫苗加强免疫后1周HI抗体效价均可达到5.0。[结论] 黄羽肉鸡于10和14日龄免疫禽流感DNA疫苗,每羽30 μg,免疫后3周,每羽0.3 mL H5禽流感D7+rD8二价灭活疫苗或每羽30 μg禽流感DNA疫苗加强免疫后,可为鸡群提供长期的免疫保护。
Abstract:
[Objectives] The aim of this study was to explore the effect of DNA vaccine against avian influenza(H5 subtype Re-8 strain) on the immunity of Yellow broiler and the rational immunization procedure. [Methods] The 210 one day old healthy non-immune Yellow broilers were selected and randomly divided into seven groups with 30 chickens per group. Groups A,B,and C were single immunization test groups immunized with 30 μg avian influenza DNA vaccine at 1,10,and 14 days old,respectively. Groups D,E and F were the enhanced immunization test groups,and groups D and E were immunized with 30 μg avian influenza DNA vaccine at 14 and 10 days old,respectively. After 3 weeks,group D was boosted with 30 μg of the same vaccine,and group E was boosted with 0.3 mL H5 avian influenza D7+rD8 bivalent inactivated vaccine. Group F was the oil seedling control group and immunized with 0.3 mL H5 avian influenza D7+rD8 bivalent inactivated vaccine at 10 and 31 days old,respectively. Group G was a blank control group. Blood samples were collected before and after immunization every week(every 2 weeks in the later period) and serum HI titer was measured to study the fluctuation of maternal antibody and antibody in the immunized period. [Results] The maternal antibody and antibody passing rate of Yellow broilers decreased to 3.5 and 40% at 14 days old. In the single vaccination against avian influenza DNA vaccine,the HI antibody began to increase at 1 to 2 weeks after immunization at 14 and 10 days old,and continued to decrease at 3 weeks after immunization at 1 day old. The titer of HI antibody could reach 5.0 in 1 week after enhanced immunization with avian influenza DNA vaccine or bivalent inactivated vaccine. [Conclusions] Yellow broilers were immunized with avian influenza DNA vaccine(30 μg per fowl) at 10 or 14 days old. At 3 weeks after immunization,the Yellow broilers were strengthened with 0.3 mL per fowl D7+RD8 bivalent inactivated vaccine or 30 μg per fowl avian influenza DNA vaccine,which could provide long-term immune protection for broilers.

参考文献/References:

[1] Freidl G S,Meijer A,de Bruin E,et al. Influenza at the animal-human interface:a review of the literature for virological evidence of human infection with swine or avian influenza viruses other than A(H5N1)[J]. European Communicable Disease Bulletin,2014,19(18):20793.
[2] Chen H L. H5N1 avian influenza in China[J]. Science in China Series C:Life Sciences,2009,52(5):419-427.
[3] Shu Y L,Yu H J,Li D X. Lethal avian influenza A(H5N1) infection in a pregnant woman in Anhui Province,China[J]. The New England Journal of Medicine,2006,354(13):1421-1422.
[4] Korteweg C,Gu J. Pathology,molecular biology,and pathogenesis of avian influenza A(H5N1) infection in humans[J]. The American Journal of Pathology,2008,172(5):1155-1170.
[5] Chen H. Avian influenza vaccination:the experience in China[J]. Revue Scientifique et Technique,2009,28(1):267-274.
[6] Tian G B,Zhang S H,Li Y B,et al. Protective efficacy in chickens,geese and ducks of an H5N1-inactivated vaccine developed by reverse genetics[J]. Virology,2005,341(1):153-162.
[7] Robinson H L,Boyle C A,Feltquate D M,et al. DNA immunization for influenza virus:studies using hemagglutinin- and nucleoprotein-expressing DNAs[J]. The Journal of Infectious Diseases,1997,176(Suppl 1):S50-S55.
[8] Oveissi S,Omar A R,Yusoff K,et al. DNA vaccine encoding avian influenza virus H5 and Esat-6 of Mycobacterium tuberculosis improved antibody responses against AIV in chickens[J]. Comparative Immunology,Microbiology and Infectious Diseases,2010,33(6):491-503.
[9] Jiang Y P,Yu K Z,Zhang H B,et al. Enhanced protective efficacy of H5 subtype avian influenza DNA vaccine with Codon optimized HA gene in a pCAGGS plasmid vector[J]. Antiviral Research,2007,75(3):234-241.
[10] Li K,Gao H L,Gao L,et al. Enhancement of humoral and cellular immunity in chickens against reticuloendotheliosis virus by DNA prime-protein boost vaccination[J]. Vaccine,2013,31(15):1944-1949.
[11] Gao H L,Li K,Gao L,et al. DNA prime-protein boost vaccination enhances protective immunity against infectious bursal disease virus in chickens[J]. Veterinary Microbiology,2013,164(1/2):9-17.
[12] Khurana S,Wu J,Dimitrova M,et al. DNA priming prior to inactivated influenza A(H5N1) vaccination expands the antibody epitope repertoire and increases affinity maturation in a boost-interval-dependent manner in adults[J]. The Journal of Infectious Diseases,2013,208(3):413-417.
[13] 郝珊珊,郑阳,余远楠,等. H9N2亚型禽流感病毒NA和M2基因的克隆与表达[J]. 畜牧与兽医,2019,51(5):121-127. Hao S S,Zheng Y,Yu Y N,et al. Cloning and prokaryotic expression of NA and M2 genes of H9N2 subtype avian influenza virus[J]. Animal Husbandry & Veterinary Medicine,2019,51(5):121-127(in Chinese with English abstract).
[14] Bi Y H,Xie Q,Zhang S,et al. Assessment of the internal genes of influenza A(H7N9) virus contributing to high pathogenicity in mice[J]. Journal of Virology,2015,89(1):2-13.
[15] Liu M. DNA vaccines:a review[J]. Journal of Internal Medicine,2003,253(4):402-410.
[16] Ghanem A,Healey R,Adly F G. Current trends in separation of plasmid DNA vaccines:a review[J]. Analytica Chimica Acta,2013,760:1-15.
[17] 胡北侠,任素芳,黄艳艳,等. 禽流感疫苗免疫鸡群后HI抗体消长规律及免疫保护临界值的测定[J]. 山东农业科学,2003,35(5):41-42. Hu B X,Ren S F,Huang Y Y,et al. Changes of HI antibody titer of chicken vaccinated with avian influenza vaccine and measurement of lowest protecting antibody titer[J]. Shandong Agricultural Sciences,2003,35(5):41-42(in Chinese).
[18] 李俊平. H5亚型禽流感DNA疫苗对鸭和鹌鹑的免疫保护效力研究[D]. 北京:中国农业科学院,2011. Li J P. Protective efficacy of H5 subtype avian influenza DNA vaccine in ducks and quails[D]. Beijing:Chinese Academy of Agricultural Sciences,2011(in Chinese with English abstract).
[19] 郭艳娜,刘志远,孙彤彤,等. 低致病性A/Anhui/1/2013(H7N9)流感病毒感染小鼠肺组织的miRNA表达谱分析[J]. 南京农业大学学报,2019,42(3):482-490. DOI:10.7685/jnau.201812037. Guo Y N,Liu Z Y,Sun T T,et al. Analysis of miRNA expression profile in lung of mice infected with low pathogenic A/Anhui/1/2013(H7N9) influenza virus[J]. Journal of Nanjing Agricultural University,2016,39(5):814-818(in Chinese with English abstract).
[20] Nobiron I,Thompson I,Brownlie J,et al. Cytokine adjuvancy of BVDV DNA vaccine enhances both humoral and cellular immune responses in mice[J]. Vaccine,2001,19(30):4226-4235.
[21] Rasoli M,Omar A R,Aini I,et al. Fusion of HSP70 gene of Mycobacterium tuberculosis to hemagglutinin(H5) gene of avian influenza virus in DNA vaccine enhances its potency[J]. Acta Virologica,2010,54(1):33-39.
[22] Yao Q X,FischerK P,Li L N,et al. Immunogenicity and protective efficacy of a DNA vaccine encoding a chimeric protein of avian influenza hemagglutinin subtype H5 fused to CD154(CD40L) in Pekin ducks[J]. Vaccine,2010,28(51):8147-8156.
[23] Zhao K,Zhang Y,Zhang X Y,et al. Chitosan-coated poly(lactic-co-glycolic) acid nanoparticles as an efficient delivery system for Newcastle disease virus DNA vaccine[J]. International Journal of Nanomedicine,2014,9:4609-4619.

相似文献/References:

[1]王德云,胡元亮,张宝康,等.几种中药成分与L-2免疫协同作用的比较[J].南京农业大学学报,2005,28(3):140.[doi:10.7685/j.issn.1000-2030.2005.03.032]
[2]曹少先,杨利国,茆达干,等.生长抑素DNA疫苗pEGS /2SS在大鼠体内的表达与分布[J].南京农业大学学报,2005,28(2):0.[doi:10.7685/j.issn.1000-2030.2005.02.030]
[3]王莹,郑浩,何成华,等.伏马菌素B1人工抗原的鉴定及抗体的制备[J].南京农业大学学报,2011,34(5):93.[doi:10.7685/j.issn.1000-2030.2011.05.017]
 WANG Ying,ZHENG Hao,HE Cheng-hua,et al.Characterization of fumonisin B1artificial antigen and production of the antibody[J].Journal of Nanjing Agricultural University,2011,34(3):93.[doi:10.7685/j.issn.1000-2030.2011.05.017]
[4]严若峰,闫峰宾,王晶晶,等.捻转血矛线虫肌动蛋白基因的克隆与表达及其DNA疫苗的构建[J].南京农业大学学报,2012,35(4):87.[doi:10.7685/j.issn.1000-2030.2012.04.016]
 YAN Ruo-feng,YAN Feng-bin,WANG Jing-jing,et al.Gene cloning,expression and DNA vaccine construction of Haemonchus contortus actin[J].Journal of Nanjing Agricultural University,2012,35(3):87.[doi:10.7685/j.issn.1000-2030.2012.04.016]
[5]张俞,史兴娟.Cep70的细胞定位分析及在微管聚合中的作用研究[J].南京农业大学学报,2017,40(6):1094.[doi:10.7685/jnau.201707012]
 ZHANG Yu,SHI Xingjuan.Study of cellular localization of Cep70 and its role in microtubule polymerization[J].Journal of Nanjing Agricultural University,2017,40(3):1094.[doi:10.7685/jnau.201707012]

备注/Memo

备注/Memo:
收稿日期:2020-03-04。
基金项目:天津市科技成果转化接力支持项目;国家一类新兽药-禽流感DNA疫苗成果转化接力项目(18YFJLCG00040)
作者简介:唐荣宏,硕士,工程师。
通信作者:鲍恩东,博士,教授,主要从事免疫病理及分子病理研究,E-mail:baoed@ringpu.com。
更新日期/Last Update: 1900-01-01